首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gas chromatographic method for the simultaneous quantitation of ephedrine, pseudoephedrine, norephedrine (phenylpropanolamine), norpseudoephedrine (cathine) and methylephedrine in urine is described. The method consists of a liquid–liquid extraction with tert.-butyl methyl ether at pH 14. The extracts are analysed on a GC system equipped with an Rtx-5 Amine column and a nitrogen–phosphorus detector. Method validation shows excellent separation, linearity, specificity, accuracy, precision, intra-laboratory repeatability and reproducibility, making the method especially suitable for quantitation of ephedrines in urine samples for doping control purposes. A statistical analysis on the abuse of the different ephedrines in urine from athletes controlled in the Flemish doping control laboratory during the period 1993–2000 is included.  相似文献   

2.
The analytical method described permits the determination of 2-dimethylamino-5,6-dimethyl-4-hydroxypyrimidine (DDHP), 2-methylamino-5,6-dimethyl-4-hydroxypyrimidine (MDHP) and 2-amino-5,6-dimethyl-4-hydroxypyrimidine (ADHP) in human urine. These hydroxypyrimidines are metabolites of pirimicarb (2-dimethylamino-5,6-dimethylpyrimidin-4-yldimethylcarbamate) which is applied as insecticide. The analytes are extracted into a mixture of diethyl ether and acetonitrile. Pentafluorobenzyl bromide serves as derivatising reagent. The derivatives are analysed using capillary gas chromatography with mass selective detection. 2-Amino-4-hydroxy-6-methylpyrimidine and 4-hydroxy-6-trifluoromethylpyrimidine are used as internal standards. The detection limits are 0.5 μg/l (DDHP), 1 μg/l (MDHP) and 4 μg/l (ADHP), respectively. The method was used for analysing seven urine samples collected from workers who had applied pirimicarb. The three metabolites were found in every sample in concentrations up to 60 μg/l.  相似文献   

3.
A sensitive gas chromatographic method for the determination of cyclophosphamide in urine is presented. After liquid—liquid extraction with diethyl ether and derivatization with trifluoroacetic anhydride, cyclophosphamide was identified and quantified with mass spectrometry. The method is suitable for the determination of cyclophosphamide at concentrations of more than 0.25 ng/ml, which enables the uptake of cyclophosphamide during occupational activities, such as the preparation and administration of antineoplastic agents in hospitals, to be measured. Simple preparation makes the method appropriate for routine analysis.  相似文献   

4.
An analytical procedure to screen butorphanol in horse race urine using ELISA kits and its confirmation by GC–MS is described. Urine samples (5 ml) were subjected to enzymatic hydrolysis and extracted by solid-phase extraction. The residues were then evaporated, derivatized and injected into the GC–MS system. The ELISA test (20 μl of sample) was able to detect butorphanol up to 104 h after the intramuscular administration of 8 mg of Torbugesic, and the GC–MS method detected the drug up to 24 h in FULL SCAN or 31 h in the SIM mode. Validation of the GC–MS method in the SIM mode using nalbuphine as internal standard included linearity studies (10–250 ng/ml), recovery (±100%), intra-assay (4.1–14.9%) and inter-assay (9.3–45.1%) precision, stability (10 days), limit of detection (10 ng/ml) and limit of quantitation (20 ng/ml).  相似文献   

5.
In doping control laboratories the misuse of anabolic androgenic steroids is commonly investigated in urine by gas chromatography–low-resolution mass spectrometry with selected ion monitoring (GC–LRMS–SIM). By using high-resolution mass spectrometry (HRMS) detection sensitivity is improved due to reduction of biological background. In our study HRMS and LRMS methods were compared to each other. Two different sets were measured both with HRMS and LRMS. In the first set metandienone (I) metabolites 17α-methyl-5β-androstan-3α,17β-diol (II), 17-epimetandienone (III), 17β-methyl-5β-androst-1-ene-3α,17α-diol (IV) and 6β-hydroxymetandienone (V) were spiked in urine extract prepared by solid-phase extraction, hydrolysis with β-glucuronidase from Escherichia coli and liquid–liquid extraction. In the second set the metabolites were first spiked in blank urine samples of four male persons before pretreatment. Concentration range of the spiked metabolites was 0.1–10 ng/ml in both sets. With HRMS (resolution of 5000) detection limits were 2–10 times lower than with LRMS. However, also with the HRMS method the biological background hampered detection and compounds from matrix were coeluted with some metabolites. For this reason the S/N values of the metabolites spiked had to be first compared to S/N values of coeluted matrix compounds to get any idea of detection limits. At trace concentrations selective isolation procedures should be implemented in order to confirm a positive result. The results suggest that metandienone misuse can be detected by HRMS for a prolonged period after stopping the intake of metandienone.  相似文献   

6.
7.
We devised a sensitive and simple method for determining nitrate in whole blood, using an extractive alkylation technique. Nitrate in whole blood was reduced to nitrite by hydrazine sulfate in the presence of Cu2+ and Zn2+ as catalysts, and alkylated with pentafluorobenzyl bromide using tetradecyldimethylbenzylammonium chloride as the phase-transfer catalyst. The obtained derivative was analyzed qualitatively by gas chromatography–mass spectrometry and quantitatively by gas chromatography with electron-capture detection. The detection limit of nitrate in whole blood was 0.01 mM. The calibration curve was linear over the concentration range from 0.02 to 1.0 mM for nitrate in whole blood. The accuracy and precision of the method were evaluated and the relative standard deviations were found to be within 10%. Using this method, the blood nitrate levels of two victims who committed suicide by inhaling automobile exhaust gas were determined.  相似文献   

8.
The described method permits the determination of the five most important metabolites of the pyrethroids permethrin, cypermethrin, deltamethrin, λ-cyhalothrin, fenvalerate, phenothrin and β-cyfluthrin in human urine in one run. The major urinary metabolites of these substances are cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Cl2CA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br2CA), fluoro-3-phenoxybenzoic acid (F-PBA) and 3-phenoxybenzoic acid (3-PBA). After acidic hydrolysis to release the conjugated carboxylic acid metabolites, the analytes were separated from the matrix by means of solid-phase extraction using a reversed-phase column. The components of the eluate were converted to their methyl esters and extracted in hexane. Separation and quantitative analysis of the pyrethroid metabolites was carried out by capillary gas chromatography and mass selective detection. 2-Phenoxybenzoic acid served as an internal standard. The detection limits lay between 0.3 and 0.5 μg per litre urine. The relative standard deviations of the within-series imprecision were between 1% and 6%. The relative recovery rates ranged between 90% and 98%. Using this method we determined the elimination of pyrethroid metabolites in 24-h urine samples from eight pest controllers after indoor application of permethrin. The detected concentrations ranged from 1 to 70 μg g−1 creatinine.  相似文献   

9.
A procedure based on gas chromatography–tandem mass spectrometry for identification and quantitation of lorazepam in plasma and urine is presented. The analyte was extracted from biological fluids under alkaline conditions using solid-phase extraction with an Extrelut-1 column in the presence of oxazepam-d5 as the internal standard. Both compounds were then converted to their trimethylsilyl derivatives and the reaction products were identified and quantitated by gas chromatography–tandem mass spectrometry using the product ions of the two compounds (m/z 341, 306 and 267 for lorazepam derivative and m/z 346, 309 and 271 for oxazepam-d5 derivative) formed from the parent ions by collision-induced dissociation in the ion trap spectrometer. Limit of quantitation was 0.1 ng/ml. This method was validated for urine and plasma samples of individuals in treatment with the drug.  相似文献   

10.
The urine concentrations of free salsolinol were determined in six healthy volunteers, using a gas chromatographic—mass spectrometric method with electron-capture negative-ion chemical ionization after derivatization with pentafluoropropionyl anhydride. The sensitivity of this method allows the quantification of salsolinol concentrations of 0.55 pmol/ml. The synthesis of [2H4]salsolinol from dopamine and [2H4]acetaldehyde via a Pictet—Spengler condensation is described; [2H4]salsolinol was used as the internal standard for salsolinol quantification. The urine concentrations of free salsolinol ranged from ca. 1 to 6 pmol/ml.  相似文献   

11.
A rapid and reliable gas chromatographic—mass spectrometric method for the determination of clenbuterol in urine is described. Penbutolol was used as internal standard. Four derivatization procedures have been tested, of which 1-butaneboronic acid gave the best results. The method includes extraction of the alkalinized urine (3 ml) with tert.-butyl methyl ether—n-butanol (9:1), derivatization with 1-butaneboronic acid (15 min at room temperature), and analysis in the selected-ion monitoring mode of the derivatives of clenbuterol at m/z 243, 327 and 342 and of penbutolol at m/z 342 and 357. The detection limit is 0.5 ng/ml and the recovery better than 90%.  相似文献   

12.
13.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

14.
To understand the biological function of taurine, a study of taurine kinetics in the cat was undertaken. This paper describes a method developed for the accurate determination of 15N-taurine enrichment in cat urine by gas chromatography—mass spectrometry. 15N-Taurine was given to six animals as an oral bolus dose of 20 mg/kg body weight, and the urine was pooled on a daily basis. The hydrolysed or non-hydrolysed urine samples (for total and free taurine, respectively) were directly derivatized without further purification. The N-pentafluorobenzoyl di-n-butyl amide derivative obtained was analysed, and the fragment [M — (di-n-butyl amide)]+, carrier of the labelled nitrogen atom, was selectively recorded at m/z 302 (14N-taurine) and m/z 303 (15N-taurine). Calibration curves prepared in hydrolysed and non-hydrolysed urine samples spiked with 15N-taurine gave similar slopes to the calibration curve prepared in water. The average coefficient of variation observed for the mole percent excess in the non-hydrolysed samples was 1.22% (n = 92) and for the hydrolysed urine 1.00% (n = 98). There was no significant difference between free and total taurine enrichment. The half-life of taurine in cat body was found to be 29.3 ± 2.9 h and 35.0 ± 1.4 h for free and total taurine, respectively (non-significant). The taurine body pool, calculated by extrapolation of the curve to zero time, had a value of 137 ± 22 ng/kg and 157 ± 11 mg/kg for free and total taurine, respectively.  相似文献   

15.
A gas chromatographic—mass spectrometric method for the determination of cobalt in biological materials employing stable enriched 62Ni as an internal standard and using lithium bis(trifluoroethyl)dithiocarbamate as a chelating agent is described. The method involves the addition of a known amount (1 μg) of 62Ni to the sample, the formation of the chelate and the determination by selected-ion monitoring of the m/z ratio, which corresponds to . No appreciable memory effect was observed, and an acceptable dynamic range of 100 was found. There was good agreement between the cobalt concentration values determined by gas chromatography—mass spectrometry and electrothermal atomic absorption spectrometry. The present method has high sensitivity and can be used for the quantitation of cobalt at concentrations as low as 1 μg/l. The use of enriched 62Ni circumvents the problem caused by endogenous nickel and simultaneously provides data on the nickel concentration in the biological sample without any additional experimental effort.  相似文献   

16.
A gas chromatography–mass spectrometry method (SIM mode) was developed for the determination of perfluorodecalin (cis and trans isomers, 50% each) (FDC), and perfluoromethylcyclohexylpiperidine (3 isomers) (FMCP) in rat blood. The chromatographic separation was performed by injection in the split mode using a CP-select 624 CB capillary column. Analysis was performed by electronic impact ionization. The ions m/z 293 and m/z 181 were selected to quantify FDC and FMCP due to their abundance and to their specificity, respectively. The ion m/z 295 was selected to monitor internal standard. Before extraction, blood samples were stored at −30°C for at least 24 h in order to break the emulsion. The sample preparation procedure involved sample clean-up by liquid–liquid extraction. The bis(F-butyl)ethene was used as the internal standard. For each perfluorochemical compound multiple peaks were observed. The observed retention times were 1.78 and 1.87 min for FDC, and 2.28, 2.34, 2.48 and 2.56 min for FMCP. For each compound, two calibration curves were used; assays showed good linearity in the range 0.0195–0.78 and 0.78–7.8 mg/ml for FDC, and 0.00975–0.39 and 0.39–3.9 mg/ml for FMCP. Recoveries were 90 and 82% for the two compounds, respectively with a coefficient of variation <8%. Precision ranged from 0.07 to 15.6%, and accuracy was between 89.5 and 111.4%. The limits of quantification were 13 and 9 μg/ml for FDC and FMCP, respectively. This method has been used to determine the pharmacokinetic profile of these two perfluorochemical compounds in blood following administration of 1.3 g of FDC and 0.65 g of FMCP per kg body weight, in emulsion form, in rat.  相似文献   

17.
A sensitive gas chromatographic assay using mass selective-detection has been developed for the simultaneous quantitation of the enantiomers of (±)-gacyclidine (a non competitive N-methyl-

-aspartate antagonist) in human plasma. Gacyclidine enantiomers and phencyclidine (PCP), the internal standard, were extracted using a single-step liquid–liquid extraction with hexane at pH 8.0. Each enantiomer was separated on a chiral gas chromatography capillary column and specifically detected by mass spectrometry (MS) in selected-ion monitoring (SIM) mode. Gacyclidine enantiomers and PCP were monitored using the fragment ions at m/z 206 and 200, respectively. No interference was observed from endogenous components. The limit of quantitation (LOQ) for each enantiomer of gacyclidine was 300 pg/ml by using plasma samples of 500 μl. The calibration curves were linear (r2=0.998) over a range of 0.3125 to 20 ng/ml. The extraction efficiency was higher than 95% for both enantiomers. Intra- and inter-day bias were less than 10% at every standard curve concentration. Intra-day precision was less than 19% for (−)-gacyclidine and 15% for (+)-gacyclidine. Inter-day precision was below 15% for both enantiomers. The assay was validated for an enantioselective pharmacokinetic study in healthy male volunteers.  相似文献   

18.
Organic nitrocompounds are the most frequently used constituents of explosives and some of them have been evaluated to be highly toxic or even carcinogenic. Human contact with explosives may originate from a variety of sources, including occupational exposure during the production of ammunition as well as environmental exposure due to the contamination of soil and ground water reservoirs on former military production sites and training areas. This paper describes two gas chromatography–mass spectrometry–selected ion monitoring methods for the determination of twelve nitroaromatic compounds in urine (nitrobenzene, 1,2-dinitrobenzene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene). The analytes are detectable in the lowest μg/l range, with imprecisions of 3–22% within series and 5–29% between series, depending on the compound of interest. Both procedures are rapid and relatively easy to perform and, therefore, are advantageous for the screening of occupationally or environmentally exposed persons. We analysed urine samples obtained from nine workers from an ammunition dismantling workshop and from twelve control persons. 2,4,6-Trinitrotoluene was detected in six samples at concentrations between 4 and 43 μg/l. The main metabolites of 2,4,6-trinitrotoluene, 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene, were found in a concentration range from 143 to 16 832 μg/l and from 24 to 5787 μg/l, respectively. Nonconjugated aminodinitrotoluenes were present as varying percentages of the total amount. 2,4-Dinitrotoluene and 2,6-dinitrotoluene were found in two samples (2–9 μg/l). Nitroaromatics were not detectable in urine specimens from control persons.  相似文献   

19.
A gas chromatographic—mass spectrometric method was developed to determine eperisone hydrochloride, 4′-ethyl-2-methyl-3-piperidinopropiophenone hydrochloride, in human plasma over the concentration range 0.2–40 ng/ml. Excellent sensitivity was achieved by selection of a favorable fragment ion, m/z 98, of eperisone and reduction of heat decomposition of eperisone by using a splitless injector and a shortened capillary column. The method described here allows the determination of plasma concentrations as low as 0.2 ng/ml, the concentration attained 6 h after a single oral administration of 50 mg. At eperisone hydrochloride concentrations higher than 0.5 ng/ml, the mean inter-day variation of accuracy of the assay was less than 12%.  相似文献   

20.
A gas chromatographic–mass spectrometric method was developed for the simultaneous analysis of 15 low-dosed benzodiazepines, both parent compounds and their corresponding metabolites, in human urine. The target compounds are alprazolam, -hydroxyalprazolam, 4-hydroxyalprazolam, flunitrazepam, 7-aminoflunitrazepam, desmethylflunitrazepam, flurazepam, hydroxyethylflurazepam, nitrogen-desalkylflurazepam, ketazolam, oxazepam, lormetazepam, lorazepam, triazolam and -hydroxytriazolam. Nitrogen-methylclonazepam is used as the internal standard. The urine sample preparation involves enzymatic hydrolysis of the conjugated metabolites with Helix pomatia β-glucuronidase for 1 h at 56°C followed by solid-phase extraction on a phenyl-type column. The extracted benzodiazepines are subsequently analyzed on a polydimethylsiloxane column using on-column injection to enhance sensitivity. The extraction efficiency exceeded 80% for all compounds except for oxazepam, lorazepam and 4-hydroxyalprazolam which had recoveries of about 60%. The LODs ranged from 13 to 30 ng/ml in the scan mode and from 1.0 to 1.7 ng/ml in the selected ion monitoring (SIM) mode. Linear calibration curves were obtained in the concentration ranges from 50 to 1000 ng/ml in the scan mode and from 5 to 100 ng/ml in the SIM mode. The within-day and day-to-day relative standard deviations at three different concentrations never exceeded 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号