首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC). This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays.  相似文献   

2.

Background  

Polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR contains a DNA binding domain (DBD) and a PHA granule binding domain (GBD), it anchors to the promoter region of PHA granule-associated protein (PhaP) to repress phaP expression. However, PhaR will bind to PHB granules and be released from phaP promoter region when PHA granules are formed in vivo, initiating expression of phaP gene. Based on this regulatory mechanism, a bacterial two-hybrid system was developed: PhaR was separated into two parts: DBD was used to fuse with the bait, GBD with the prey, and phaP was replaced by a reporter gene lacZ. However, GBD protein expressed in vivo formed inclusion bodies. Thus, PhaP with strong binding ability to PHB granules was employed to replace GBD.  相似文献   

3.
4.

Background  

We recently described a mini-intein in the PRP8 gene of a strain of the basidiomycete Cryptococcus neoformans, an important fungal pathogen of humans. This was the second described intein in the nuclear genome of any eukaryote; the first nuclear encoded intein was found in the VMA gene of several saccharomycete yeasts. The evolution of eukaryote inteins is not well understood. In this report we describe additional PRP8 inteins (bringing the total of these to over 20). We compare and contrast the phylogenetic distribution and evolutionary history of the PRP8 intein and the saccharomycete VMA intein, in order to derive a broader understanding of eukaryote intein evolution. It has been suggested that eukaryote inteins undergo horizontal transfer and the present analysis explores this proposal.  相似文献   

5.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

6.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

7.
Previously, we reported a non‐chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin‐like polypeptide (ELP) to provide fast and cost‐effective protein purification. However, the bound dockerin‐intein tag cannot be completely dissociated from the ELP‐cohesin capturing scaffold due to the high binding affinity, resulting in a single‐use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium‐coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA‐mediated dissociation of the bound dockerin‐intein tag from the ELP‐cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non‐chromatographic based affinity method provides an attractive approach for efficient and cost‐effective protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:968–971, 2013  相似文献   

8.

Background  

Escherichia coli as a frequently utilized host organism for recombinant protein production offers different cellular locations with distinct qualities. The periplasmic space is often favored for the production of complex proteins due to enhanced disulfide bond formation, increased target product stability and simplified downstream processing. To direct proteins to the periplasmic space rather small proteinaceus tags that can be used for affinity purification would be advantageous.  相似文献   

9.
The Staphylococcus simulans gene encoding lysostaphin has been PCR amplified from pRG5 recombinant plasmid (ATCC 67076) and cloned into Escherichia coli expression pTYB12 vector (IMPACT-CN System, New England BioLabs) which allows the overexpression of a target protein as a fusion to a self-cleavable affinity tag. The self-cleavage activity of the intein allows the release of the lysostaphin enzyme from the chitin-bound intein tag, resulting in a single-column purification of the target protein. This abundant overproduction allows purifying milligram amounts of the enzyme.  相似文献   

10.

Background  

In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein) in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein). In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef.  相似文献   

11.
A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity.  相似文献   

12.
Tian L  Sun SS 《PloS one》2011,6(8):e24183

Background

Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor.

Methodology/Principal Findings

To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2–4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein.

Conclusion/Significance

This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry.  相似文献   

13.

Background  

An arbitrary set of 96 human proteins was selected and tested to set-up a fully automated protein production strategy, covering all steps from DNA preparation to protein purification and analysis. The target proteins are encoded by functionally uncharacterized open reading frames (ORF) identified by the German cDNA consortium. Fusion proteins were produced in E. coli with four different fusion tags and tested in five different purification strategies depending on the respective fusion tag. The automated strategy relies on standard liquid handling and clone picking equipment.  相似文献   

14.

Background  

Technology used for the purification of recombinant proteins is a key issue for the biochemical and structural analyses of proteins. In general, affinity tags, such as glutathione-S-transferase or six-histidines, are used to purify recombinant proteins. Since such affinity tags often interfere negatively with the structural and functional analyses of proteins, they are usually removed by treatment with proteases. Previously, Dr. H. Mao reported self-cleavage purification of a target protein by fusing the sortase protein to its N-terminal end, and subsequently obtained tag-free recombinant protein following expression in Escherichia coli. This method, however, is yet to be applied to the cell-free based protein production.  相似文献   

15.
Human granulocyte-macrophage colony stimulating factor (hGMCSF) is an important therapeutic cytokine. As a novel attempt to purify hGMCSF protein, without the enzymatic cleavage of the affinity tag, an intein-based system was used. The gene was fused by overlap extension PCR to the intein sequence at its N-terminal in pTYB11 vector. The hGMCSF was expressed as a fusion protein in E. coli BL21(DE3), and E. coli GJ1158. In the former, the protein was expressed as inclusion bodies and upon purification the yield was 7 mg/l with a specific activity of 0.5 × 107 IU/mg. In salt-inducible E. coli GJ1158, hGMCSF was expressed in a soluble form at 20 mg/l and a specific activity of 0.9 × 107 IU/mg. The intein-hGMCSF was purified on a chitin affinity column by cleaving intein with 50 mM DTT resulting in a highly pure 14.7 kDa hGMCSF.  相似文献   

16.
Easy and low-cost protein purification methods for the mass production of commonly used enzymes that play important roles in biotechnology are in high demand. In this study, we developed a fast, low-cost recombinant protein purification system in the methylotrophic yeast Pichia pastoris using the family 3 cellulose-binding module (CBM3)-based affinity tag. The codon of the cbm3 gene from Clostridium thermocellum was optimized based on the codon usage of P. pastoris. The CBM3 tag was then fused with enhanced green fluorescent protein (CBM3-EGFP) or with inulinase and expressed in P. pastoris to demonstrate its ability to function as an affinity tag in a yeast expression system. We also examined the effects of glycosylation on the secreted CBM3-tag. The secreted wild-type CBM3-EGFP was glycosylated; however, this had little influence on the adsorption of the fusion protein to the regenerated amorphous cellulose (RAC; maximum adsorption capacity of 319 mg/g). Two CBM3-EGFP mutants lacking glycosylation sites were also constructed. The three CBM3-EGFPs expressed in P. pastoris and the CBM3-EGFP expressed in Escherichia coli all had similar RAC adsorption capacity. To construct a tag-free recombinant protein purification system based on CBM3, a CBM3-intein-EGFP fusion protein was expressed in P. pastoris. This fusion protein was stably expressed and the self-cleavage of intein was efficiently induced by DTT or l-cysteine. In this study, we were able to purify the recombinant fusion protein with high efficiency using both intein and direct fusion-based strategies.  相似文献   

17.

Background  

Tools for in vivo manipulation of protein abundance or activity are highly beneficial for life science research. Protein stability can be efficiently controlled by conditional degrons, which induce target protein degradation at restrictive conditions.  相似文献   

18.
PDTD: a web-accessible protein database for drug target identification   总被引:1,自引:0,他引:1  

Background  

Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D) structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (TargetFishingDocking), which has been used widely by others. Recently, we have constructed a protein target database,PotentialDrugTargetDatabase (PDTD), and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation.  相似文献   

19.
While protein purification has long been dominated by standard chromatography, the relatively high cost and complex scale‐up have promoted the development of alternative non‐chromatographic separation methods. Here we developed a new non‐chromatographic affinity method for the purification of proteins expressed in Escherichia coli. The approach is to genetically fuse the target proteins with an affinity tag. Direct purification and recovery can be achieved using a thermo‐responsive elastin‐like protein (ELP) scaffold containing the capturing domain. Naturally occurring cohesin–dockerin pairs, which are high‐affinity protein complex responsible for the formation of cellulosome in anaerobic bacteria, were used as the model. By exploiting the highly specific interaction between the dockerin and cohesin domain from Clostridium thermocellum and the reversible aggregation property of ELP, highly purified and active dockerin‐tagged proteins, such as the endoglucanase CelA, chloramphenicol acetyl transferase (CAT), and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single thermal precipitation step with yields achieving over 90%. Incorporation of a self‐cleaving intein domain enabled rapid removal of the affinity tag from the target proteins, which was subsequently removed by another cycle of thermal precipitation. This method offers great flexibility as a wide range of affinity tags and ligands can be used. Biotechnol. Bioeng. 2012; 109: 2829–2835. © 2012 Wiley Periodicals, Inc.  相似文献   

20.

Background  

In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号