首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《PloS one》2009,4(9)

Background

Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required.

Methodology/Principal Findings

Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression.

Conclusions/Significance

We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.  相似文献   

2.
Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMNs). Our immunohistochemistry (IHC) studies have shown a consensus position on mucin expression profiles in pancreatic neoplasms as follows: MUC1-positive but MUC2-negative expression in PDACs; MUC1-negative but MUC2-positive expression in intestinal-type IPMNs (dangerous type); MUC1-negative and MUC2-negative expression in gastric-type IPMNs (safe type); High MUC4 expression in PDAC patients with a poor outcome; and MUC4-positive expression in intestinal-type IPMNs. We also showed that three mucin genes (MUC1, MUC2 and MUC4) expression in cancer cell line was regulated by DNA methylation. We have developed a novel ‘methylation-specific electrophoresis (MSE)’ method to analyze the DNA methylation status of mucin genes by high sensitivity and resolution. By using the MSE method, we evaluated pancreatic juice samples from 45 patients with various pancreatic lesions. The results were compared with final diagnosis of the pancreatic lesions including IHC of mucin expression in the paired pancreatic tissues. The results indicated that the DNA methylation status of MUC1, MUC2 and MUC4 in pancreatic juice matched with the mucin expression in tissue. Analyses of the DNA methylation status of MUC1, MUC2 and MUC4 were useful for differential diagnosis of human pancreatic neoplasms, with specificity and sensitivity of 87% and 80% for PDAC; 100% and 88% for intestinal-type IPMN; and 88% and 77% for gastric-type IPMN, respectively. In conclusion, MSE analysis of human pancreatic juice may provide useful information for selection of treatment for pancreatic neoplasms.  相似文献   

3.
DNA microarray-based screening and diagnostic technologies have long promised comprehensive testing capabilities. However, the potential of these powerful tools has been limited by front-end target-specific nucleic acid amplification. Despite the sensitivity and specificity associated with PCR amplification, the inherent bias and limited throughput of this approach constrain the principal benefits of downstream microarray-based applications, especially for pathogen detection. To begin addressing alternative approaches, we investigated four front-end amplification strategies: random primed, isothermal Klenow fragment-based, 29 DNA polymerase-based, and multiplex PCR. The utility of each amplification strategy was assessed by hybridizing amplicons to microarrays consisting of 70-mer oligonucleotide probes specific for enterohemorrhagic Escherichia coli O157:H7 and by quantitating their sensitivities for the detection of O157:H7 in laboratory and environmental samples. Although nearly identical levels of hybridization specificity were achieved for each method, multiplex PCR was at least 3 orders of magnitude more sensitive than any individual random amplification approach. However, the use of Klenow-plus-Klenow and 29 polymerase-plus-Klenow tandem random amplification strategies provided better sensitivities than multiplex PCR. In addition, amplification biases among the five genetic loci tested were 2- to 20-fold for the random approaches, in contrast to >4 orders of magnitude for multiplex PCR. The same random amplification strategies were also able to detect all five diagnostic targets in a spiked environmental water sample that contained a 63-fold excess of contaminating DNA. The results presented here underscore the feasibility of using random amplification approaches and begin to systematically address the versatility of these approaches for unbiased pathogen detection from environmental sources.  相似文献   

4.
Human intelligence, as measured by intelligence quotient (IQ) tests, demonstrates one of the highest heritabilities among human quantitative traits. Nevertheless, studies to identify quantitative trait loci responsible for intelligence face challenges because of the small effect sizes of individual genes. Phenotypically discordant monozygotic (MZ) twins provide a feasible way to minimize the effects of irrelevant genetic and environmental factors, and should yield more interpretable results by finding epigenetic or gene expression differences between twins. Here we conducted array-based genome-wide DNA methylation and gene expression analyses using 17 pairs of healthy MZ twins discordant intelligently. ARHGAP18, related to Rho GTPase, was identified in pair-wise methylation status analysis and validated via direct bisulfite sequencing and quantitative RT-PCR. To perform expression profile analysis, gene set enrichment analysis (GSEA) between the groups of twins with higher IQ and their co-twins revealed up-regulated expression of several ribosome-related genes and DNA replication-related genes in the group with higher IQ. To focus more on individual pairs, we conducted pair-wise GSEA and leading edge analysis, which indicated up-regulated expression of several ion channel-related genes in twins with lower IQ. Our findings implied that these groups of genes may be related to IQ and should shed light on the mechanism underlying human intelligence.  相似文献   

5.
To understand the spatiotemporal changes in cellular status that occur during embryonic development, it is desirable to detect simultaneously the expression of genes, proteins, and epigenetic modifications in individual embryonic cells. A technique termed methylation-specific fluorescence in situ hybridization (MeFISH) was developed recently that can visualize the methylation status of specific DNA sequences in cells fixed on a glass slide. Here, we adapted this glass slide-based MeFISH to the study of intact embryos, and established a method called whole-mount MeFISH. This method can be applied to any DNA sequences in theory and, as a proof-of-concept experiment, we examined the DNA methylation status of satellite repeats in developing mouse primordial germ cells, in which global DNA demethylation is known to take place, and obtained a result that was consistent with previous findings, thus validating the MeFISH method. We also succeeded in combining whole-mount MeFISH with immunostaining or RNA fluorescence in situ hybridization (RNA-FISH) techniques by adopting steps to retain signals of RNA-FISH or immunostaining after harsh denaturation step of MeFISH. The combined methods enabled the simultaneous visualization of DNA methylation and protein or RNA expression at single-cell resolution without destroying embryonic and nuclear structures. This whole-mount MeFISH technique should facilitate the study of the dynamics of DNA methylation status during embryonic development with unprecedented resolution.  相似文献   

6.
DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and good-quality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations(termed as the 1st,2nd,3rd and 4th DNA sample, respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.  相似文献   

7.
A more thorough understanding of the differences in DNA methylation (DNAm) profiles in populations may hold promise for identifying molecular mechanisms through which genetic and environmental factors jointly contribute to human diseases. Inflammation is a key molecular mechanism underlying several chronic diseases including cardiovascular disease, and it affects DNAm profile on both global and locus-specific levels. To understand the impact of inflammation on the DNAm of the human genome, we investigated DNAm profiles of peripheral blood leukocytes from 966 African American participants in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. By testing the association of DNAm sites on CpG islands of over 14,000 genes with C-reactive protein (CRP), an inflammatory biomarker of cardiovascular disease, we identified 257 DNAm sites in 240 genes significantly associated with serum levels of CRP adjusted for age, sex, body mass index and smoking status, and corrected for multiple testing. Of the significantly associated DNAm sites, 80.5% were hypomethylated with higher CRP levels. The most significant Gene Ontology terms enriched in the genes associated with the CRP levels were immune system process, immune response, defense response, response to stimulus, and response to stress, which are all linked to the functions of leukocytes. While the CRP-associated DNAm may be cell-type specific, understanding the DNAm association with CRP in peripheral blood leukocytes of multi-ethnic populations can assist in unveiling the molecular mechanism of how the process of inflammation affects the risks of developing common disease through epigenetic modifications.  相似文献   

8.

Background

Elevated serum homocysteine is associated with an increased risk of cardiovascular disease (CVD). This may reflect a reduced systemic remethylation capacity, which would be expected to cause decreased genomic DNA methylation in peripheral blood leukocytes (PBL).

Methodology/Principal Findings

We examined the association between prevalence of CVD (myocardial infarction, stroke) and its predisposing conditions (hypertension, diabetes) and PBL global genomic DNA methylation as represented by ALU and Satellite 2 (AS) repetitive element DNA methylation in 286 participants of the Singapore Chinese Health Study, a population-based prospective investigation of 63,257 men and women aged 45–74 years recruited during 1993–1998. Men exhibited significantly higher global DNA methylation [geometric mean (95% confidence interval (CI)): 159 (143, 178)] than women [133 (121, 147)] (P = 0·01). Global DNA methylation was significantly elevated in men with a history of CVD or its predisposing conditions at baseline (P = 0·03) but not in women (P = 0·53). Fifty-two subjects (22 men, 30 women) who were negative for these CVD/predisposing conditions at baseline acquired one or more of these conditions by the time of their follow-up I interviews, which took place on average about 5·8 years post-enrollment. Global DNA methylation levels of the 22 incident cases in men were intermediate (AS, 177) relative to the 56 male subjects who remained free of CVD/predisposing conditions at follow-up (lowest AS, 132) and the 51 male subjects with a diagnosis of CVD or predisposing conditions reported at baseline (highest AS 184) (P for trend = 0.0008) No such association was observed in women (P = 0.91). Baseline body mass index was positively associated with AS in both men and women (P = 0·007).

Conclusions/Significance

Our findings indicate that elevated, not decreased, PBL DNA methylation is positively associated with prevalence of CVD/predisposing conditions and obesity in Singapore Chinese.  相似文献   

9.
10.
For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs), recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%–40%) of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS). Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R2) of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features.  相似文献   

11.
The lower amount of 5 methylcytosine in DNA from bull sperm relative to DNA of other bovine tissues is a result of the absence of this minor base from several of the satellite DNAs in sperm. This applies particularly to the 1.715, 1.711b and 1.709 satellites and less so to the 1.706 and 1.711a satellites. Mouse sperm DNA is also partially undermethylated.  相似文献   

12.
Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.  相似文献   

13.

Background

Molecular tools are now widely used to address crucial management and conservation questions. To date, dart biopsying has been the most commonly used method for collecting genetic data from cetaceans; however, this method has some drawbacks. Dart biopsying is considered inappropriate for young animals and has recently come under scrutiny from ethical boards, conservationists, and the general public. Thus, identifying alternative genetic collection techniques for cetaceans remains a priority, especially for internationally protected species.

Methodology/Principal Findings

In this study, we investigated whether blow-sampling, which involves collecting exhalations from the blowholes of cetaceans, could be developed as a new less invasive method for DNA collection. Our current methodology was developed using six bottlenose dolphins, Tursiops truncatus, housed at the National Aquarium, Baltimore (USA), from which we were able to collect both blow and blood samples. For all six individuals, we found that their mitochondrial and microsatellite DNA profile taken from blow, matched their corresponding mitochondrial and microsatellite DNA profile collected from blood. This indicates that blow-sampling is a viable alternative method for DNA collection.

Conclusion/Significance

In this study, we show that blow-sampling provides a viable and less invasive method for collection of genetic data, even for small cetaceans. In contrast to dart biopsying, the advantage of this method is that it capitalizes on the natural breathing behaviour of dolphins and can be applied to even very young dolphins. Both biopsy and blow-sampling require close proximity of the boat, but blow-sampling can be achieved when dolphins voluntarily bow-ride and involves no harmful contact.  相似文献   

14.
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions.  相似文献   

15.
Two methods were used in an attempt to increase the efficiency and strand selectivity of methyl-directed mismatch repair of bacteriophage lambda heteroduplexes in E. coli. Previous studies of such repair used lambda DNA that was only partially methylated as the source of methylated chains. Also, transfection was carried out in methylating strains. Either of these factors might have been responsible for the incompleteness of the strand selectivity observed previously. In the first approach to increasing strand selectivity, heteroduplexes were transfected into a host deficient in methylation, but no changes in repair frequencies were observed. In the second approach, heteroduplexes were prepared using DNA that had been highly methylated in vitro with purified DNA adenine methylase as the source of methylated chains. In heteroduplexes having a repairable cI/+ mismatch, strand selectivity was indeed enhanced. In heteroduplexes with one chain highly methylated and the complementary chain unmethylated, the frequency of repair on the unmethylated chain increased to nearly 100%. Heteroduplexes with both chains highly methylated were not repaired at a detectable frequency. Thus, chains highly methylated by DNA adenine methylase were refractory to mismatch repair by this system, regardless of the methylation of the complementary chain. These results support the hypothesis that methyl-directed mismatch repair acts to correct errors of replication, thus lowering the mutation rate.  相似文献   

16.
Viral infection and replication involves the reorganization of the actin network within the host cell. Actin plays a central role in the mechanical properties of cells. We have demonstrated a method to quantify changes in mechanical properties of fabricated model three-dimensional (3D) connective tissue following viral infection. Using this method, we have characterized the impact of infection by the human herpesvirus, cytomegalovirus (HCMV). HCMV is a member of the herpesvirus family and infects a variety of cell types including fibroblasts. In the body, fibroblasts are necessary for maintaining connective tissue and function by creating mechanical force. Using this 3D connective tissue model, we observed that infection disrupted the cell's ability to generate force and reduced the cumulative contractile force of the tissue. The addition of HCMV viral particles in the absence of both viral gene expression and DNA replication was sufficient to disrupt tissue function. We observed that alterations of the mechanical properties are, in part, due to a disruption of the underlying complex actin microfilament network established by the embedded fibroblasts. Finally, we were able to prevent HCMV-mediated disruption of tissue function by the addition of human immune globulin against HCMV. This study demonstrates a method to quantify the impact of viral infection on mechanical properties which are not evident using conventional cell culture systems.  相似文献   

17.
A new method for silver impregnation of endocrine cells of the gastrointestinal mucosa is described. It offers great reliability, eveness of impregnation, and, since it can be used on batches of slides, is also suitable for histology class and investigation material. The procedure for paraffin sections of formalin-fixed material is as follows: dewax and transfer to distilled water, leave in 0.5% silver nitrate solution for 2 hours at 60 C. Rinse in distilled water, then treat in Bodian developer (hydroquinone, 1 g; sodium sulphite, 5 g; distilled water, 100 ml) previously heated to 60 C. Rinse in running tap water, distilled water, and then re-impregnate for 10 minutes at 60 C in the same silver solution and reduoc in Bodian's solution. Sma the background is not impregnated by this method, sections may be counterstained by any basic anilin dye to bring out nuclei. A 0.1% kernechtrot solution was found very satisfactory in this respect. The granulations of argyrophil cells stand out sharply black against a red background.  相似文献   

18.
19.
Worldwide, 1.4 billion people are infected with the intestinal worm Ascaris lumbricoides. As a result, Ascaris eggs are commonly found in wastewater and sludges. The current microscopy method for detecting viable Ascaris eggs is time- and labor-intensive. The goal of this study was to develop a real-time quantitative PCR (qPCR) method to determine the levels of total and viable Ascaris eggs in laboratory solutions using the first internally transcribed spacer (ITS-1) region of ribosomal DNA (rDNA) and rRNA. ITS-1 rDNA levels were proportional to Ascaris egg cell numbers, increasing as eggs developed from single cells to mature larvae and ultimately reaching a constant level per egg. Treatments causing >99% inactivation (high heat, moderate heat, ammonia, and UV) eliminated this increase in ITS-1 rDNA levels and caused decreases that were dependent on the treatment type. By taking advantage of this difference in ITS-1 rDNA level between viable, larvated eggs and inactivated, single-celled eggs, qPCR results were used to develop inactivation profiles for the different treatments. No statistical difference from the standard microscopy method was found in 75% of the samples (12 of 16). ITS-1 rRNA was detected only in samples containing viable eggs, but the levels were more variable than rDNA levels and ITS-1 rRNA could not be used for quantification. The detection limit of the rDNA-based method was approximately one larvated egg or 90 single-celled eggs; the detection limit for the rRNA-based method was several orders of magnitude higher. The rDNA qPCR method is promising for both research and regulatory applications.  相似文献   

20.
The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes. DNA methylation has a demonstrated role in the genome stability and protection, regulation of gene expression and many other aspects of genome function and maintenance. BS-seq is a relatively unbiased method for profiling the DNA methylation, with a resolution capable of measuring methylation at individual cytosines. Here we describe, as an example, a workflow to handle DNA methylation analysis, from BS-seq library preparation to the data visualization. We describe some applications for the analysis and interpretation of these data. Our laboratory provides public access to plant DNA methylation data via visualization tools available at our “Next-Gen Sequence” websites (http://mpss.udel.edu), along with small RNA, RNA-seq and other data types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号