首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Rengel  Z. 《Plant and Soil》1999,215(2):193-202
The chelator-buffered nutrient solutions containing excess chelator have been used frequently in the micronutrient research, but potential toxicity of the excess chelator has not been ascertained. The present study was conducted to test effects of four concentrations of excess HEDTA [ N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid] and two levels of total Zn on growth, root exudation, and nutrient uptake and transport by Triticum aestivum L. (cv. Aroona) and Triticum turgidum L. conv. durum (Desf.) MacKey (cv. Durati) genotypes differing in tolerance to Zn deficiency. Excess HEDTA at 50 μM reduced root and shoot growth and caused visual toxicity symptoms (necrotic lesions) on leaves; these effects were generally absent at lower concentrations of excess HEDTA. Root exudation of phytosiderophores increased with increasing concentrations of excess HEDTA at deficient and sufficient Zn levels, and was higher in Zn-deficiency-tolerant Aroona than in Zn-deficiency-sensitive Durati wheat. Shoot and root Zn concentrations showed a saturable response to increasing Zn2+ activities in solution. Excess HEDTA at 50 μM caused an increase in shoot concentrations of Fe and a decrease in concentrations of Mn and Cu. An average rate of Zn uptake increased with an increase in Zn2+ ionic activity in solution, with Zn-deficiency-tolerant Aroona having a higher rate of Zn uptake than Zn-deficiency-sensitive Durati in the deficiency range of Zn2+ activities. Average uptake rates of Mn and Cu decreased with an increase in concentration of excess HEDTA. Similar observations were noted for transport of Mn and Cu to shoots, while Zn transport to shoots was proportional to Zn2+ activities in solution. It was concluded that excess HEDTA at 50 μM adversely affects wheat growth and physiology, while excess of 25 μM or less does not cause measurable toxicity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Cook  C.M.  Kostidou  A.  Vardaka  E.  Lanaras  T. 《Photosynthetica》1998,34(2):179-193
Bean plants (Phaseolus vulgaris L. var. Zargana Kavala) were grown under conditions of increasing Cu concentrations in the growth medium (0.5-160.5 µM). Generally, the Cu concentrations between 0.5-1.5 µM were deficient, 1.5-10.5 µM were optimal, and 10.5-160.5 µM were toxic to plant growth. The Cu toxicity was associated with marked increases in plant tissue Cu concentrations. Under the Cu-deficient and optimal growth conditions, Cu was located primarily in the leaves. Under Cu toxicity, it was primarily sequestered in the roots. With increasing Cu in the growth medium, there was a positive correlation between Cu concentrations in the roots, stems and leaves, Ca in the roots, and K and Mg in the leaves. In contrast, Ca concentrations in the leaves and stems showed a negative correlation. The chlorophyll (Chl) concentration increased with increasing leaf Cu concentration, however, the Chl a/b ratio decreased. Since with an increasing leaf Cu concentration the leaf area decreased more markedly than the leaf dry mass, the net photosynthetic rate (PN) per leaf area increased and per dry mass decreased. The increase in PN per leaf area was almost entirely accounted for by the increase in Chl concentration. The initial Chl fluorescence (F0) increased with increasing leaf Cu concentration. The ratio of variable to maximum fluorescence (Fv/Fm) under Cu toxicity decreased. The half-time for the rise from F0 to Fm (t1/2) remained relatively unchanged with increasing leaf Cu concentration. Therefore the Cu-stress caused a small decrease in the efficiency of photosystem 2 photochemistry, but its primary effect was on growth.  相似文献   

4.
We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.  相似文献   

5.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

6.
The effects of root application of brassinolide (BL) on the growth and development of Arabidopsis plants ( Arabidopsis thaliana ecotype Columbia [L.] Heynh) were evaluated. Initially, all leaves were evaluated on plants 18, 22, 26 and 29 days old. The younger leaves were found to exhibit maximal petiole elongation and upward leaf bending in response to BL treatment. Therefore, based on these results leaves 6, 7 and 8 on 22–24-day-old plants were selected for all subsequent studies. Elongation along the length of the petiole in response to BL treatment was uniform with the exception of an approximately 4 mm region next to the leaf where upward curvature was observed. Both BL and 24-epibrassinolide (24-epiBL) were evaluated, with BL being more effective at lower concentrations than 24-epiBL. The exaggerated growth induced by 0.1 μ M BL was not observed in plants treated with 1 000-fold higher concentrations of GA3, IAA, NAA or 2,4-D (100 μ M ). In addition, no exaggerated growth effects were observed when plants were treated with 200 ppm ethylene or 1 m M ACC. All treatments with BL, NAA, 2,4-D, IAA or ACC promoted ethylene and ACC production in wild type Arabidopsis plants, but only BL triggered exaggerated plant growth. BL also promoted exaggerated growth and elevated levels of ACC and ethylene in the ethylene insensitive mutant etr1-3 , showing that the effect of BR on growth is independent of ethylene. This work provides evidence that BR-induced exaggerated growth of Arabidopsis plants is independent of gibberellins, auxins and ethylene.  相似文献   

7.
Adventitious shoots were induced from excised embryos of Pinus resinosa Ait, on half-strength Le-Poivre (LP) medium containing 1–70 μ M N6-benzyladenine (BA). At lower concentrations of BA, only 2–3 shoot primordia (from as many as 22 formed per embryo) developed into shoots when subcultured onto medium containing 0.5% activated charcoal. Concentrations of 10 to 70 μ M of BA produced significantly higher numbers of shoot primordia and most of them developed into shoots. Ten to 17 day culture on medium containing 10–25 μ M BA proved optimal for maximum adventitious shoot production. Less than three days of incubation on the cytokinin medium did not stimulate the formation of adventitious shoots. Twenty-four day culture on the same medium produced several shoots, but most of them failed to develop normally and formed callus. Coconut milk (0.1–5% v/v) inhibited adventitious shoot formation. Using optimal conditions, seeds from 11 open-pollinated selected trees were compared to test for genetic differences in the potential to produce adventitious shoots from embryos. No significant differences were observed with regard to the shoots produced per embryo among the different seed collections. More than 200 plants produced through this technique were tested for variation in several isozymes by electrophoresis. No variations were observed.  相似文献   

8.
Yang X  Li T  Yang J  He Z  Lu L  Meng F 《Planta》2006,224(1):185-195
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 μM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 μM for 48 h. At 1,000 μM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.  相似文献   

9.
Accumulation of free proline in response to Cu, Cd and Zn was studied in nontolerant and metal-tolerant Silene vulgaris (Moench) Garcke. In the nontolerant ecotype these metals induced a massive accumulation of proline, especially in the leaves. When compared at equimolar concentrations in the nutrient solution, Cu was the most effective inducer, followed by Cd and Zn, respectively. However, when compared at equal toxic strength, as estimated from the degree of root growth inhibition, proline accumulation decreased in the order Cd > Zn > Cu. The threshold exposure levels for proline accumulation coincided with the highest no-effect-concentrations for root growth. In the metal-tolerant ecotype the constitutive proline concentration in the leaves was 5 to 6 times higher than in the nontolerant ecotype. Exposure to Cu and Zn, however, was without any effect on the leaf proline concentration, even at exposure levels that caused a 50% root growth inhibition. Only Cd, when present at concentrations above the highest no-effect-concentration for root growth, induced a further increase of the leaf proline content. Reducing transpiration by placing the plants under a transparent polyethylene cover almost completely inhibited proline accumulation, even at metal accumulation rates in the leaves that caused a 10-fold increase of the proline level in leaves of uncovered plants. The results demonstrate that metal-induced proline accumulation depends on the development of a metal-induced water deficit in the leaves. Differential metal-induced proline accumulation in distinctly metal-tolerant ecotypes is a consequence, rather than a cause of differential metal tolerance.  相似文献   

10.
A single application of gibberellic acid to young internodes significantly accelerated the rate of internode growth and the rate of leaf production in shoots of Xanthium pennsylvanicum Wallr. The average duration of one plastochron in treated plants was reduced to 43% of control levels. Gibberellic acid also had a pronounced morphogenetic effect on leaves so that the area and leaf length of treated plants were both significantly reduced. Depending upon concentration, auxin had both inhibitory and promotive effects on Xanthium shoots. Indole-3-acetic acid markedly altered the response of the gibberellic acid-treated internodes and those located above and below the site of application. In addition, high auxin concentrations induced the formation of adventitious roots in treated internodes. Auxin also brought about significant reductions in the length and area of leaves developed under the influence of this hormone.  相似文献   

11.
Haiyan Chu  Paul Grogan 《Plant and Soil》2010,328(1-2):411-420
Copper uptake, localisation and biochemical and physiological traits were studied in hydroponically-grown Erica andevalensis plants at different increasing concentrations of Cu (1 µM, 50 µM, 100 µM, 250 µM, and 500 µM). Increasing Cu concentration in the nutrient medium led to a significative reduction in plant growth rate, an increase in root Cu concentration, leaf photosynthetic pigments and root peroxidase activity. Copper accumulation followed the pattern roots>stems>leaves, a typical behaviour of metal-excluders. Copper treatments led to significant changes in the free amino acid composition in shoots and roots and the concentration of polyamines in shoots. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a partial restriction of upward Cu transport by root vascular tissues. In leaf tissues, Cu mostly accumulated in the abaxial epidermis, suggesting a mechanism of compartmentalization to restrict mesophyll accumulation. The toxic effects of excess Cu were avoided to a certain extent by root immobilization, tissue compartmentalization, synthesis of complexing amino acids and induction of enzymes to prevent oxidative damage are among mechanisms adopted by Erica andevalensis to thrive in acidic-metalliferous soils.  相似文献   

12.
A facultative halophite Mesembryanthemum crystallinum L. (the common ice plant) was shown to grow successively at the high concentrations of Cu and Zn. Although 25 μM CuSO4 or 800 μM ZnSO4 retarded markedly plant growth, they did not interfere with the completion of plant development and the formation of viable seeds. In such plants, leaves accumulated more than 200 μg of Cu and 1700 μg of Zn per 1 g of dry weight. A damaging effect of heavy metals (HMs) was manifested in a reduced content of water in leaves and proline accumulation in them. As copper is a metal with transient valence, copper salts are more toxic than zinc salts, which was manifested in a stronger inhibition of the chlorophyll synthesis. Both HMs induced oxidative stress, as evident from increased activities of guaiacol peroxidase and lipoxygenase. Moderate Cu and Zn concentrations did not damage cell membranes in leaves, as evident from the absence of their action on electrolyte leakage either under optimum conditions or after heat treatment. A capability of a substantial HM accumulation by the common ice plant and their considerable transport to shoots (up to 50 μg of Cu and 560 μg of Zn per plant) make it possible to consider the common ice plant as a promising phytoremediator. __________ Translated from Fiziologiya Rastenii, Vol. 52, No. 6, 2005, pp. 848–858. Original Russian Text Copyright ? 2005 by Kholodova, Volkov, Kuznetsov.  相似文献   

13.
Summary When waterlogged over a period of 80 days plants of Eucalyptus robusta Sm. showed symptoms of leaf chlorosis, epinasty and premature abscission, reduction of stem elongation, stem hypertrophy and formation of adventitious shoots; chlorophyll content was reduced and soluble protein content of the upper leaves increased. Waterlogging doubled the rate of release of ethylene from roots and stems within 6 days, but had no effect on the ethylene concentration of leaves.  相似文献   

14.
15.
H Zhao  L Wu  T Chai  Y Zhang  J Tan  S Ma 《Journal of plant physiology》2012,169(13):1243-1252
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn.  相似文献   

16.
In vitro culture is currently used to produce plant material for ex situ conservation of endangered species. In this study, an efficient protocol for shoot regeneration from leaves and roots was developed for Centaurea ultreiae, a critically endangered species. Organogenesis from leaf and root explants was promoted by incubating these explants on half-strength Murashige and Skoog (MS) medium in the presence of one of four different cytokinins [6-benzyladenine (BA), zeatin, kinetin or N6-(2-isopentenyl) adenine (2iP)], each provided at five different levels. Shoot organogenesis was induced in both explants. The best response, 90% of leaf explants producing a mean of 2.48 shoots per explants and 94.3% of root explants producing a mean of 5.60 viable shoots per explants, was observed when explants were incubated on a medium containing 0.55 μM BA. Histological studies revealed connectivity between vascular tissues of regenerated shoots and cambial cells of leaf explants. Moreover, adventitious shoots were derived from pericycle cells of root explants and parenchymatic cells of callus tissues.  相似文献   

17.
18.
Grewal  Harsharn Singh  Williams  Rex 《Plant and Soil》1999,214(1-2):39-48
Response of 13 alfalfa (Medicago sativa L.) genotypes to varied Zn supply (+Zn: 2 mg kg−1 soil, −Zn: no added Zn) was studied in a pot experiment under controlled environmental conditions. Plants were grown for four weeks in a Zn-deficient siliceous sandy soil. Plants grown at no added Zn showed typical Zn deficiency symptoms i.e. interveinal chlorosis of leaves, yellowish-white necrotic lesions on leaf blades, necrosis of leaf margins, smaller leaves and a marked reduction in growth. There was solute leakage from the leaves of Zn-deficient plants, while no solute leakage from Zn-sufficient plants. The ratios of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn in Zn-deficient plants were extremely high compared with Zn-sufficient plants indicating disturbance of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn balance within plant system by Zn deficiency. Genotypes differed markedly in Zn efficiency based on shoot dry matter production. Alfalfa genotypes also differed markedly in P:Zn ratio, Cu:Zn ratio and Fe:Zn ratio under —Zn treatment. The shoot dry weight, shoot:root ratio, chlorophyll content of fresh leaf tissue, solute leakage from the leaves, Zn uptake and distribution of Zn in shoots and roots were the most sensitive parameters of Zn efficiency. Zn-efficient genotypes had less solute leakage but higher shoot:root ratio and higher Zn uptake compared with Zn-inefficient genotypes. Under —Zn treatment, Zn-inefficient genotypes had less Zn partitioning to shoots (33–37%) and more Zn retained in roots (63–67%), while Zn-efficient genotypes had about equal proportions of Zn in roots (50%) and shoots (50%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.

Aims

This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu.

Methods

The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed.

Results

At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil.

Conclusions

The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.  相似文献   

20.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号