首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: How will changing climate and habitat structure interact to control the species diversity of lichen epiphytes? Location: Scotland. Method: Species richness (=diversity) of the epiphyte lichen community known as Lobarion (named after Lobaria pulmonaria) was quantified for 94 Populus tremula stands across Scotland, and compared in a predictive model to seven climate variables and eight measures of woodland structure. An optimum model was selected and used to project Lobarion diversity over the geographic range of the study area, based on IPCC climate change scenarios and hypothetical shifts in woodland structure. Results: Species diversity of the Lobarion community was best explained by three climate variables: (1) average annual temperature; (2) autumn and winter precipitation; in combination with (3) historic‐woodland extent. Projections indicate a positive effect of predicted climate change on Lobarion diversity, consistent with the physiological traits of cyanobac‐terial lichens comprising the Lobarion. However, the general response to climate is modified significantly by the effect on diversity of historic‐woodland extent. Conclusions: Historic‐woodland extent may exert an important control over local climate, as well as impacting upon the metapopulation dynamics of species in the Lobarion. In particular, a temporal delay in the response of Lobarion species to changed woodland structure is critical to our understanding of future climate change effects. Future Lobarion diversity (e.g. in the 2050s) may depend upon the interaction of contemporary climate (e.g. 2050s climate) and historic habitat structure (e.g. 1950s woodland extent). This is supported by previous observations for an extinction debt amongst lichen epiphytes, but suggests an extension of simple climate‐response models is necessary, before their wider application to lichen epiphyte diversity.  相似文献   

2.
Aim To quantify the interaction between climate and woodland continuity in determining the bioclimatic response of lichen epiphytes. Location Northern Britain (Scotland). Methods Indicator‐species analysis was used to pre‐select lichen epiphytes along parallel gradients in climate and the extent of old‐growth woodland. Nonparametric multiplicative regression was used to describe in a predictive model the individualistic response of selected species, which were projected based on climate‐change scenarios and contrasting patterns of simulated woodland loss or gain. Species with a similar response were grouped using a novel application of cluster analysis to summarize the potentially huge number of projected outcomes. Projected patterns of occurrence under climate‐change scenarios were examined for different levels of old‐growth woodland extent. Results Forty‐two lichen species were statistically significant indicator species in oceanic woodlands, and old‐growth indicators under suboptimal climatic conditions. Responses to climate‐change scenarios were contrasting, with one group comprising species projected to increase in extent in response to climate warming, and other response groups projected to decrease in occurrence, possibly in response to shifting rainfall patterns. The occurrence of all response groups had a positive relationship with old‐growth woodland extent. Main conclusions An ‘oceanic’ biogeographical group of epiphytes identified using the baseline climatic and present‐day woodland setting comprised species with a cyanobacterial photobiont or tropical phytogeographical affinities. However, within this group the individual species responses to climate‐change scenarios were contrasting. Additionally, group responses may be poorly matched with simple ecological traits. However, the studied interaction between climate and habitat continuity suggests that the impact of climate change might be offset for certain lichen epiphytes by appropriate management of woodland resources, for example, expansion of native woodland around remnant old‐growth stands.  相似文献   

3.
The biodiversity response to climate change is a major focus in conservation research and policy. Predictive models that are used to project the impact of climate change scenarios – such as bioclimatic envelope models – are widely applied and have come under severe scrutiny. Criticisms of such models have focussed on at least two problems. First, there is an assumption that climate is the primary driver of observed species distributions (‘climatic equilibrium’), when other biogeographical controls are often reliably established. Second, a species' sensitivity to macroclimate may become less relevant when impacts are down‐scaled to a local level, incorporating a modifying effect of species interactions structuring communities. This article examines the role of different drivers (climate, pollution and landscape habitat structure) in explaining spatial community variation for a widely applied bioindicator group: lichen epiphytes. To provide an analysis free of ‘legacy effects’ (e.g. formerly higher pollution loads), the study focused on hazel stems as a relatively short‐lived and recently colonized substratum. For communities during the present day, climate is shown to interact with stem size/age as the most likely explanation of community composition, thus coupling a macroclimatic and community‐scale effect. The position of present‐day communities was projected into ordination space for eight sites in England and compared to the position of historical epiphyte communities from the same sites, reconstructed using preserved hazel wattles dating mainly to the 16th Century. This comparison of community structure for the late‐ to post‐Mediaeval period, with the post‐Industrial period, demonstrated a consistent shift among independent sites towards warmer and drier conditions, concurrent with the end of the Little Ice Age. Long‐term temporal sensitivity of epiphyte communities to climate variation thus complements spatial community patterns. If more widely applied, preserved lichen epiphytes have potential to generate new baseline conditions of environment and biodiversity for preindustrial lowland Europe.  相似文献   

4.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

5.
This paper describes a novel archaeological resource--preserved epiphytes on the timber structure of vernacular buildings--used, to our knowledge, for the first time to quantify a loss of biodiversity between pre-industrial and post-industrial landscapes. By matching the confirmed occurrence of epiphyte species for the pre-industrial period, with a statistical likelihood for their absence in the present-day landscape (post-1960), we robustly identified species that have been extirpated across three contrasting regions in southern England. First, the scale of biodiversity loss observed--up to 80 per cent of epiphytes--severely challenges biodiversity targets and environmental baselines that have been developed using reference points in the post-industrial period. Second, we examined sensitivity in the present-day distribution of extirpated species, explained by three environmental drivers: (i) pollution regime, (ii) extent of ancient woodland, and (iii) climatic setting. Results point to an interacting effect between the pollution regime (sulphur dioxide) and changed woodland structure, leading to distinctive regional signatures in biodiversity loss.  相似文献   

6.
The forest canopy is fundamentally important in biodiversity conservation and ecosystem function. Cryptogamic epiphytes are dominant tree bole and canopy elements in temperate and boreal forests, though remain neglected by mainstream forest ecology. This review makes ecological information on cryptogamic epiphytes available to a non-specialist audience, to facilitate their integration in forest biodiversity and ecosystem studies more generally. The review focuses specifically on lichen epiphytes, highlighting their diversity and ecosystem role. A principal task is to explore pattern and process in lichen epiphyte diversity – species composition and richness – therefore demonstrating the utility of lichens as an ecological model system. The review examines key themes in previous research. First, the extensive literature used to resolve species response to, and community turnover along environmental/resource gradients, consistent with the habitat niche. Second, the evidence for dispersal-limitation, which may constrain community composition and richness in isolated habitats. Third, these two processes – the habitat niche and dispersal-limitation – are used to explain stand-scale diversity, in addition to the role of neutral effects (habitat area). Fourth, the review moves from a taxonomic (pattern) to a functional (process) perspective, considering evidence for autogenic succession evidenced by competition and/or facilitation, and non-random trends in life-history traits. This functional approach provides a counter-point to an assumption that lichen epiphyte communities are unsaturated and non-competitive, a situation which would allow the long-term accumulation of species richness with temporal continuity. Finally, the review explores landscape-scale impacts on lichen epiphytes, with recommendations for conservation.  相似文献   

7.
Aim Lichen epiphytes are important for biodiversity conservation and are also widely applied as environmental indicators. However, biogeographical and ecological knowledge underpinning lichen epiphyte conservation, and the use of lichens as indicators, is based primarily on a limited range of ‘macrolichen’ species. Wider trends in epiphyte biodiversity remain largely unexplored. This paper examines the community structure of lichen epiphytes on aspen (Populus tremula L.) in Scotland, including species across all functional groups and comprising, therefore, taxonomically difficult ‘microlichens’. Location Northern Britain (Scotland). Methods Epiphytes were sampled from 12 sites throughout Scotland and examined at two scales: between and within aspen stands. Species were classified into contrasting functional groups and ordination by detrended correspondence analysis was used to summarize community structure. Results Within aspen stands (between trees) epiphyte communities showed successional patterns related to tree age. These successional patterns changed predictably for stands aligned along a climatic gradient (between stands). Main conclusions A dual climatic–successional trend in epiphyte community structure is presented. Large‐scale trends in epiphyte diversity are explained as the local response of species with contrasting functional traits to climate and autogenic succession. Turnover of functional groups between stands is positively related to β‐diversity, and ecological limits to the frequency of contrasting functional groups are presented. Accordingly, the study and application of lichen species with similar functional traits may inadequately represent patterns of biodiversity. This prompts criticism of the currently accepted conservation strategy, i.e. (1) an emphasis in the conservation literature on ‘macrolichen’ species with similar ecologies and (2) the application of lichen indices over climatically variable geographical areas.  相似文献   

8.
The expansion of agriculture into tropical forest frontiers is one of the primary drivers of the global extinction crisis, resulting in calls to intensify tropical agriculture to reduce demand for more forest land and thus spare land for nature. Intensification is likely to reduce habitat complexity, with profound consequences for biodiversity within agricultural landscapes. Understanding which features of habitat complexity are essential for maintaining biodiversity and associated ecosystem services within agricultural landscapes without compromising productivity is therefore key to limiting the environmental damage associated with producing food intensively. Here, we focus on oil palm, a rapidly expanding crop in the tropics and subject to frequent calls for increased intensification. One promoted strategy is to remove epiphytes that cover the trunks of oil palms, and we ask whether this treatment affects either biodiversity or yield. We experimentally tested this by removing epiphytes from four‐hectare plots and seeing if the biodiversity and production of fruit bunches 2 months and 16 months later differed from equivalent control plots where epiphytes were left uncut. We found a species‐rich and taxonomically diverse epiphyte community of 58 species from 31 families. Epiphyte removal did not affect the production of fresh fruit bunches, or the species richness and community composition of birds and ants, although the impact on other components of biodiversity remains unknown. We conclude that as they do not adversely affect palm oil production, the diverse epiphyte flora should be left uncut. Our results underscore the importance of experimentally determining the effects of habitat complexity on yield before introducing intensive methods with no discernible benefits.  相似文献   

9.
The effect of management related factors on species richness of epiphytic bryophytes and lichens was studied in managed deciduous-coniferous mixed forests in Western-Hungary. At the stand level, the potential explanatory variables were tree species composition, stand structure, microclimate and light conditions, landscape and historical variables; while at tree level host tree species, tree size and light were studied. Species richness of the two epiphyte groups was positively correlated. Both for lichen and bryophyte plot level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for bryophytes the presence of large trees, while for lichens amount and heterogeneity of light were important. Tree level richness was mainly determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size generally increased tree level species richness, except on pine for bryophytes and on hornbeam for lichens. The key variables for epiphytic diversity of the region were directly influenced by recent forest management; historical and landscape variables were not influential. Forest management oriented to the conservation of epiphytes should focus on: (i) the maintenance of tree species diversity in mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks); (iii) conserving large trees within the stands; (iv) providing the presence of shrub and regeneration layer; (v) creating heterogeneous light conditions. For these purposes tree selection and selective cutting management seem more appropriate than shelterwood system.  相似文献   

10.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

11.
Aim Although vascular epiphytes are important components of species richness and complexity of Neotropical forests, vascular epiphytes are under‐represented in large scale biogeographical analyses. We studied the diversity, biogeography and floristic relationships of the epiphytic flora of the Yasuní region (Western Amazonia) in a Neotropical context, with special emphasis on the influence of the Andean flora on floristic composition and diversity of surrounding lowland forests. Location Western Amazonian lowland rainforest, Tiputini Biodiversity Station (0°38′ S 76°09′ W, 230 m a.s.l., 650 ha), Yasuní National Park, Ecuador. Methods We compared the vascular epiphyte flora of Yasuní with 16 published Neotropical epiphyte inventories. Secondly, based on a floristic database with records of more than 70,000 specimens of vascular epiphytes from the Neotropics the elevational composition of eight selected inventories was analysed in detail. Results The vascular epiphyte flora of Yasuní is characterized by a very high species richness (313 spp.). A moderate portion of species is endemic to the Upper Napo region (c. 10%). However, this figure is much higher than previous analyses primarily based on woody species suggested. Geographical ranges of these species match with a proposed Pleistocene forest refuge. Compared with Northern and Central Amazonian sites, Western Amazonian epiphyte communities are characterized by a higher portion of montane and submontane species. Species richness of vascular epiphytes at the sites was correlated with the amount of rainfall, which is negatively correlated with the number of dry months. Main conclusion Recent and historic patterns of rainfall are the driving forces behind diversity and floristic composition of vascular epiphytes in Western Amazonia: high annual rainfall in combination with low seasonality provides suitable conditions to harbour high species richness. The proximity to the Andes, the most important centre of speciation for most Neotropical epiphytic taxa, in combination with the climatic setting has allowed a continuous supply of species richness to the region. At least for epiphytes, the borderline between the Andean and Amazonian flora is much hazier than previously thought. Moreover, the comparatively moist climate in Western Amazonia during the Pleistocene has probably led to fewer extinctions and/or more speciation than in more affected surrounding lowlands.  相似文献   

12.
Axioms developed from island biogeography theory (i.e. species–area relationships, effects of fragmentation and isolation) are central to the development of conservation strategy. Within this context, the 'extinction debt' hypothesis brings into question an often assumed relationship between species richness and present-day spatial habitat structure (i.e. extent, fragmentation), suggesting instead that the richness and composition of biological communities may lag behind spatial changes in habitat. We examined evidence for an extinction debt among epiphytic lichens, a highly diverse biological group of significant conservation concern. Using sites in Scotland, we compared epiphyte species richness in smaller-scale habitat units (aspen stands) to larger-scale woodland structure (extent and fragmentation) measured at two spatial scales (1 km2 and 4 km2) and for two timeframes, modern (1990s to 2000s) and historic (1860s to 1880s). Species richness was positively related to woodland extent and negatively related to woodland fragmentation; however, richness was explained better by historic woodland structure at a 1-km2 scale, than by modern woodland structure. The results indicate: (1) a coupling of stand-scale epiphyte assembly and dynamics of the wider woodland ecosystem, and (2) a significant lag in the response of epiphyte species richness to habitat spatial structure. However, the effect of spatial habitat structure is different between species groups with contrasting traits. The effect of decreasing woodland extent on epiphyte richness is generally more severe for microlichens (comprising a greater number of rare and specialist species) than the more generalist macrolichens.  相似文献   

13.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

14.
Aim For epiphytic plants trees are habitat units, and tree size determines epiphyte species richness. While growing, trees generate vertical microhabitats that are exploited by epiphytes. One would expect to find four different types of relationship between tree size and epiphyte species richness: positive linear (young trees), neutral (old trees), negative (old decaying trees) and positive asymptotic (trees of mixed size class in a mature forest). We tested these relationships in plots of colonizing sweetgum trees in pastureland, isolated remnant trees in pastureland (old oaks) and sweetgum and oaks in a pristine forest. Location The study was carried out in a landscape shaped by the fragmentation of lower montane cloud forest in San Andrés Tlalnelhuayocan (19°30′56′′ N and 96°59′50′′ W; 1500–1600 m a.s.l.) in central Veracruz, Mexico. Methods We measured the d.b.h. of all oaks and sweetgum trees (d.b.h. ≥ 5 cm) present in pastureland and in three 100 m2 plots of a lower montane cloud forest. All trees were climbed and species richness of the epiphytes recorded. Results As expected, colonizer trees in pastureland showed a linear positive relationship. Although we found evidence that remnant oaks in pastureland had a neutral relationship between tree size and epiphyte species richness, the low power of the test did not allow us to make conclusions about the kind of relationship. Mixed size‐class pristine forest trees showed a positive linear relationship between tree size and epiphyte species richness instead of a positive asymptotic one. Main conclusions Our results suggest that in the study area epiphyte communities are unsaturated, as the number of species increases with tree size and does not reach a ceiling. This evidence supports the idea that the species–area relationship is not asymptotic. However, the epiphyte community on remnant pastureland oaks may be saturated as epiphyte species richness did not increase with tree size, but a larger sample size is needed to confirm the neutral pattern. Neutral, asymptotic and negative patterns in the relationship between tree size and epiphyte species richness depend on the saturation of the trees by epiphytes. Other studies have suggested tree saturation, but further research is necessary in order to confirm or rule out these patterns.  相似文献   

15.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

16.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

17.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

18.
Measures of geodiversity may provide a potentially useful surrogate for biodiversity patterns in insufficiently surveyed areas. However, their reliability in modelling the spatial variation in species richness is inadequately understood. We investigated whether the explanatory and predictive power of species richness models can be improved by considering explicit measures of geodiversity (variability of earth surface materials, forms and processes) in addition to climate and topography variables. Vascular plant species richness was modelled in two study areas in Northern Europe, Finland at the resolution of 500 or 1000?m, and as a function of three geodiversity (geological, geomorphological and hydrological diversity) variables, and six climate and topography variables. Variation partitioning was used to identify the independent and shared contributions of the geodiversity, climate and topography variable groups in explaining the spatial patterns of species richness. Generalized additive models were used to explore the ability of the different explanatory variables in predicting plant species richness within and between the study areas. In both the study areas, the inclusion of measures of geodiversity improved the explanatory power, predictive ability and robustness of the plant species richness models. In conclusion, the explicit measures of geodiversity appear to be promising surrogates of biodiversity, which reflect important abiotic resource factors, and may thus provide an equally, or even more reliable basis for transferring biodiversity models to new areas than models based on climate and topography variables.  相似文献   

19.
Aim This study aims to assess the impact of climate change on forests and vascular epiphytes, using species distribution models (SDMs). Location Island of Taiwan, subtropical East Asia. Methods A hierarchical modelling approach incorporating forest migration velocity and forest type–epiphyte interactions with classical SDMs was used to model the responses of eight forest types and 237 vascular epiphytes for the year 2100 under two climate change scenarios. Forest distributions were modelled and modified by dominant tree species’ dispersal limitations and hypothesized persistence under unfavourable climate conditions (20 years for broad‐leaved trees and 50 years for conifers). The modelled forest projections together with 16 environmental variables were used as predictors in models of epiphyte distributions. A null method was applied to validate the significance of epiphyte SDMs, and potential vulnerable species were identified by calculating range turnover rates. Results For the year 2100, the model predicted a reduction in the range of most forest types, especially for Picea and cypress forests, which shifted to altitudes c. 400 and 300 m higher, respectively. The models indicated that epiphyte distributions are highly correlated with forest types, and the majority (77–78%) of epiphyte species were also projected to lose 45–58% of their current range, shifting on average to altitudes c. 400 m higher than currently. Range turnover rates suggested that insensitive epiphytes were generally lowland or widespread species, whereas sensitive species were more geographically restricted, showing a higher correlation with temperature‐related factors in their distributions. Main conclusions The hierarchical modelling approach successfully produced interpretable results, suggesting the importance of considering biotic interactions and the inclusion of terrain‐related factors when developing SDMs for dependant species at a local scale. Long‐term monitoring of potentially vulnerable sites is advised, especially of those sites that fall outside current conservation reserves where additional human disturbance is likely to exacerbate the effect of climate change.  相似文献   

20.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号