首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the substitution of Arg for Gly 13 on the structure of the transforming region decapeptide (Leu 6-Gly 15) of the ras oncogene encoded P21 protein has been investigated using conformational energy analysis. A human malignancy has been identified that contains a ras gene with a single mutation in the thirteenth codon such that the encoded protein would have Arg substituted for Gly at this position, and transfection of cells in culture with this gene results in malignant transformation. Conformational analysis demonstrates that the Arg 13 decapeptide adopts a conformation identical to that for other peptides with substitutions at position 13 (Asp 13, Val 13) from transforming proteins that is distinctively different from that for peptides (Gly 13, Ser 13) from normal, nontransforming proteins. This is found to be an indirect effect resulting from changes in the conformation of Gly 12 produced by substitutions at position 13. These results are consistent with recent analysis of crystallographic data of proteins on conformational preferences for glycine in tripeptide sequences.  相似文献   

2.
The structural effects of amino acid substitutions at positions 12 and 16 in the amino-terminal segment (Tyr 4-Ala 18) of the ras-oncogene-encoded P21 proteins have been investigated using conformational energy analysis. The P21 protein with Val at position 12 and Lys at position 16 is known to have high transforming ability, while the P21 protein with Val at position 12 and Asn at position 16 is known to have poor transforming ability, similar to that of the normal protein (with Gly at 12 and Lys at 16.) The current results demonstrate a significant conformational change at position 15 induced by the substitution of Asn for Lys at position 16, which could explain this alteration in transformation potential. These findings are consistent with previous results suggesting the existence of a normal and a malignancy-causing conformation for the P21 proteins and suggest that the critical transforming region may encompass residues 12–15.  相似文献   

3.
The effects of amino acid substitutions for Gly 13 on the structure of the transforming region (Leu 6-Gly 15) of the P21 proteins have been explored using conformational energy calculations. It has been found that the substitution of Asp for Gly at this position results in a protein capable of transforming cells into malignant ones. Proteins that contain Ser at position 13 (but no other substitutions), however, transform cells with a greatly reduced activity. The transforming peptide with Asp 13 adopts a conformation that is different from the one for the peptide from the normal protein (with Gly 12 and Gly 13) and that may result in expression of a higher energy malignancy-producing form. The Ser-containing peptide adopts as its lowest energy conformation one that is identical to that of the peptide from the normal protein, thus explaining its lack of transforming activity. From analysis of the interactions preventing the Asp 13-containing peptide from adopting the normal conformation, it is predicted that substitutions of amino acids with branched side chains atC , such as Val, Ile, and Thr, should promote cell transformation. This prediction with Val has recently been confirmed in genetic experiments.  相似文献   

4.
The conformational effects of different amino acid substitutions for Gly at position 12 in theras-oncogene-encoded P21 proteins have been investigated using conformational energy calculations. Mutations that cause amino acid substitutions for Gly 12 result in a protein that produces malignant transformation of cells. It had previously been shown that substitution of Val, Lys, or Ser for Gly at position 12 results in a major conformational change, and that the preferred lowest energy structure for each of the substituted peptides is identical. It is now found that substitution for Gly 12 of other amino acids that have widely disparate helix-nucleating potentials and completely different side chains (Asp, Asn, Cys, Phe, Tle, Leu, and Ala) all produce this identical lowest energy conformation. This finding is consistent with the recent results of site-specific mutagenesis experiments showing that P21 proteins containing these amino acids at position 12 all promote malignant transformation of cells and suggests the existence of a malignancy-causing conformation for the P21 proteins.  相似文献   

5.
The effect of the substitution of Arg for Gly 13 on the structure of the transforming region decapeptide (Leu 6-Gly 15) of the ras oncogene encoded P21 protein has been investigated using conformational energy analysis. A human malignancy has been identified that contains a ras gene with a single mutation in the thirteenth codon such that the encoded protein would have Arg substituted for Gly at this position, and transfection of cells in culture with this gene results in malignant transformation. Conformational analysis demonstrates that the Arg 13 decapeptide adopts a conformation identical to that for other peptides with substitutions at position 13 (Asp 13, Val 13) from transforming proteins that is distinctively different from that for peptides (Gly 13, Ser 13) from normal, nontransforming proteins. This is found to be an indirect effect resulting from changes in the conformation of Gly 12 produced by substitutions at position 13. These results are consistent with recent analysis of crystallographic data of proteins on conformational preferences for glycine in tripeptide sequences.  相似文献   

6.
Oncogenic p21 protein, encoded by theras-oncogene, that causes malignant transformation of normal cells and many human tumors, is almost identical in sequence to its normal protooncogene-encoded counterpart protein, except for the substitution of arbitrary amino acids for the normally occurring amino acids at critical positions such as Gly 12 and Gin 61. Since p21 is normally activated by the binding of GTP in place of GDP, it has been postulated that oncogenic forms must retain bound GTP for prolonged time periods. However, two multiply substituted p21 proteins have been cloned, neither of which binds GDP or GTP. One of these mutant proteins with Val for Gly 10, Arg for Gly 12, and Thr for Ala 59 causes cell transformation, while the other, similar protein with Gly 10, Arg 12, Val for Gly 13 and Thr 59 does not transform cells. To define the critical conformational changes that occur in the p21 protein that cause it to become oncogenic, we have calculated the low energy conformations of the two multiply substituted mutant p21 proteins using a new adaptation of the electrostatically driven Monte Carlo (EDMC) technique, based on the program ECEPP. We have used this method to explore the conformational space available to both proteins and to compute the average structures for both using statistical mechanical averaging. Comparison of the average structures allows us to detect the major differences in conformation between the two proteins. Starting structures for each protein were calculated using the recently deposited x-ray crystal coordinates for the p21 protein, that was energy-refined using ECEPP, and then perturbed using the EDMC method to compute its average structure. The specific amino acid substitutions for both proteins were then generated into the lowest energy structure generated by this procedure, subjected to energy minimization and then to full EDMC perturbations. We find that both mutant proteins exhibit major differences in conformation in specific regions, viz., residues 35–47, 55–78, 81–93, 96–110, 115–126, and 123–134, compared with the EDMC-refined x-ray structure of the wild-type protein. These regions have been found to be the most flexible in the p21 protein bound to GDP from prior molecular dynamics calculations (Dykeset al., 1993). Comparison of the EDMC-average structure of the transforming mutant with that of the nontransforming mutant reveals major structural differences at residues 10–16, 32–40, and 60–68. These structural differences appear to be the ones that are critical in activation of the p21 protein. Analysis of the correlated motions of the different regions of the two mutant proteins reveals that changes in the conformation of regions in the carboxyl half of the protein are caused by changes in conformation around residues 10–16 and are transmitted by means of residues around Gln 61. The latter region therefore constitutes a molecular switch unit, in agreement with conclusions from prior work.On leave from the Department of Chemistry, University of Gdask, ul. Sobieskiego 18, 80-952 Gdask, Poland.  相似文献   

7.
The GTP-binding p21 protein encoded by the ras-oncogene can be activated to cause malignant transformation of cells by substitution of a single amino acid at critical positions along the polypeptide chain. Substitution of any non-cyclic L-amino acid for Gly 12 in the normal protein results in a transforming protein. This substitution occurs in a hydrophobic sequence (residues 6-15) which is known to be involved in binding the phosphate moities of GTP (and GDP). We find, using conformational energy calculations, that the 6-15 segment of the normal protein (with Gly 12) adopts structures that contain a bend at residues 11 and 12 with the Gly in the D* conformation, not allowed energetically for L-amino acids. Substitution of non-cyclic L-amino acids for Gly 12 results in shifting this bend to residues 12 and 13. We show that many computed structures for the Gly 12-containing phosphate binding loop, segment 9-15, are superimposable on the corresponding segment of the recently determined X-ray crystallographic structure for residues 1-171 of the p21 protein. All such structures contain bends at residues 11 and 12 and most of these contain Gly 12 in the C* or D* conformational state. Other computed conformations for the 9-15 segment were superimposable on the structure of the corresponding 18-23 segment of EFtu, the bacterial chain elongation factor having structural similarities to the p21 protein in the phosphate-binding regions. This segment contains a Val residue where a Gly occurs in the p21 protein. As previously predicted, all of these superimposable conformations contain a bend at positions 12 and 13, not 11 and 12. If these structures that are superimposable on EFtu are introduced into the p21 protein structure, bad contacts occur between the sidechain of the residue (here Val) at position 12 and another phosphate binding loop region around position 61. These bad contacts between the two segments can be removed by changing the conformation of the 61 region in the p21 protein to the corresponding position of the homologous region in EFtu. In this new conformation, a large site becomes available for the binding of phosphate residues. In addition, such phenomena as autophosphorylation of the p21 protein by GTP can be explained with this new model structure for the activated protein which cannot be explained by the structure for the non-activated protein.  相似文献   

8.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

9.
The GTP-binding p21 protein, encoded by the ras-oncogene, becomes transforming if amino acid substitutions are made at critical positions in the polypeptide chain, e.g., at Gly 12, Gly 13, Ala 59, Gln 61 and Glu 63. Most of these substitutions occur in two phosphate-binding loop regions, Tyr 4-Thr 20, herein designated as segment 1, and Ile 55-Met 67, herein designated, as segment 2. These two segments are homologous to two corresponding regions in the two purine nucleotide binding proteins, bacterial elongation factor (EF-tu) (Val 12-Thr 28 corresponds to segment 1; His 78-Ile 92 corresponds to segment 2) and adenylate kinase (ADK) (Lys 9-Cys 25 corresponds to segment 1 and Tyr 95-Arg 107 corresponds to segment 2). We find that the conformations of the segment 1 region in the p21 protein, EF-tu and ADK are similar to one another and that the conformation of the segment 2 region of EF-tu is superimposable on that of segment 2 of ADK. Furthermore, the relative position of the two segments in EF-tu is strikingly similar to that of the two segments in ADK. In the originally proposed X-ray structure for the p21 protein, the conformation of segment 2 in the p21 protein is not similar to that found for the other two proteins, and its disposition relative to segment 1 and the remainder of the protein is also different from that observed for the other two proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

11.
Activation of the oncogenic potential of ras oncogenes occurs by point mutations at codons 12, 13, 59, 61, and 63 of the sequences that codify for its product, a 21-kDa protein designated as p21. This activation has been postulated by computer models as modifiers of the structure of the protein, which may alter its biochemical and biological activities. We have expressed in bacteria the normal ras p21 and five mutated p21 proteins with mutations at positions 12, 59, 61, 12 plus 59, and 12 plus 61. Purification was carried out by solubilization from bacterial pellets in 7 M urea and chromatography through a Sephadex G-100 column to obtain greater than 95% purified proteins. Circular dichroic (CD) spectra showed that the normal protein and that activated by substitution of Ala59 to Thr59 are very similar in their overall structure. By contrast, point mutations affecting either 12 or 61 residues substantially altered the structure of the proteins. When the parameters of Chen et al. [Biochemistry II, 4120-4131 (1972)] were applied to the CD spectra, both normal and thr59-mutated ras proteins showed a less organized structure than mutated proteins at position 12 or 61. Since the Thr59 mutant has more similar transforming activity than other activated proteins, but a GTPase activity similar to that of the normal protein, our results support the hypothesis that there is more than one mechanism of activation of the ras p21 protein. One of these mechanisms involves important structural alterations by point mutations at position 12 or 61 which reduce the GTPase activity of the protein. Another mechanism will be that induced by a substitution of Ala59 to Thr59 which does not substantially alter the protein conformation. A putative alternative mechanism for the activation of this mutant is discussed.  相似文献   

12.
Two amino acid residues, His274 and Asp375, were replaced singly in the active site of pig citrate synthase (PCS) with Gly274, Arg274, Gly375, Asn375, Glu375, and Gln375. The nonmutant protein and the mutant proteins were expressed in and purified from Escherichia coli, and the effects of these amino acid substitutions on the overall reaction rate and conformation of the PCS protein were studied by initial velocity and full time course kinetic analysis, behavior during affinity column chromatography, and monoclonal antibody reactivity. Native and mutant proteins purified similarly had a subunit molecular weight of 50,000 and were homologous when examined with 10 independent a-PCS monoclonal IgGs or with a polyclonal anti-PHCS serum. No activity was detected for Asn375 or Gln375. The kcats of the other purified mutant proteins, however, were decreased by about 10(3) compared to the nonmutant enzyme activity. The Km for oxalacetate was decreased 10-fold in the Glu375 protein and was reduced by half in Gly274 and Arg274 PCSs, while the Km for acetyl-CoA was decreased 2-3-fold in Gly274, Arg274, and Gln375 PCSs. A mechanism is proposed that electrostatically links His274 and Asp375.  相似文献   

13.
In human fibrinogen Rouen, which is the origin of a bleedin disorder, a single amino acid is mutated from Gly(12) to Val(12) in the A alpha chain. In the previous paper of this series, this mutation was predicted to disrupt the structure of fibrinogen-like peptides bound to bovine thrombin. The structural basis of this bleeding disorder has been further assessed by studying the interaction of the following Val(12)-substituted human fibrinogen-like peptides with bovine thrombin in aqueous solution by use of two-dimensional NMR spectroscopy (including TRNOE): Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala- Glu-Val(12)-Gly-Gly-Val-Arg(16)-Gly(17)-Pro-Arg-Val-NH2 (F16), Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16) (tF16), Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16)-Gly(17)-Pro-Arg-Val-Cys(Acm)-NH2 (F17), and Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly- Val-Arg(16) (tF17). Binding of thrombin to peptides F16 and F17, and hence to tF16 and tF17 as a result of the cleavage of the Arg(16)-Gly(17) peptide bond, broadens the proton resonances of residues Asp(7) to Arg(16), suggesting that thrombin interacts specifically with this sequence of residues. Medium- and long-range TRNOE's were observed between the NH proton of Asp(7) and the C beta H protons of Ala(10) and between the ring protons of Phe(8) and the C gamma H protons of Val(12) and Val(15) in complexes of thrombin with both tF16 and tF17. A strong TRNOE, in peptides tF16 and tF17, between the C beta H protons of Glu(11) and the backbone NH proton of Val(12) was also observed. However, TRNOE's between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and between the C alpha H proton of Glu(11) and the NH proton of Gly(13), previously observed in the complex of thrombin with FpA, were absent in both peptides tF16 and tF17. From incorporation of TRNOE information into distance geometry calculations, Val(12) was found to disrupt the type II beta-turn involving Glu(11) and Gly(12) that is present in complexes of thrombin with normal fibrinogen-like peptides. The positions of Gly(13) and Gly(14) in the complex are also displaced, relative to the aromatic ring of Phe(8), by the Val(12) substitution. This altered geometry presumably affects the positioning of the Arg(16)-Gly(17) bond in the active site of thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Human cytochrome P450 (CYP) 2A6 and 2A13 play an important role in catalyzing the metabolism of many environmental chemicals including coumarin, nicotine, and several tobacco-specific carcinogens. Both CYP2A6 and CYP2A13 proteins are composed of 494 amino acid residues. Although CYP2A13 shares a 93.5% identity with CYP2A6 in the amino acid sequence, it is only about one-tenth as active as CYP2A6 in catalyzing coumarin 7-hydroxylation. To identify the key amino acid residues that account for such a remarkable difference, we generated a series of CYP2A6 and CYP2A13 mutants by site-directed mutagenesis/heterologous expression and compared their coumarin 7-hydroxylation activities. In CYP2A6, the amino acid residues at position 117 and 372 are valine (Val) and arginine (Arg), respectively; whereas in CYP2A13, they are alanine (Ala) and histidine (His). Kinetic analysis revealed that the catalytic efficiency (Vmax/Km) of the CYP2A6 Val(117)--> Ala and Arg(372)--> His mutants was drastically reduced (0.41 and 0.64 versus 3.23 for the wild-type CYP2A6 protein). In contrast, the catalytic efficiency of the CYP2A13 Ala(117) --> Val and His(372) --> Arg mutants was greatly increased (2.65 and 2.60 versus 0.31 for wild-type CYP2A13 protein). These results clearly demonstrate that the Val at position 117 and Arg at position 372 are critical amino acid residues for coumarin 7-hydroxylation. Based on the crystal structure of CYP2C5, we have generated the homology models of CYP2A6 and CYP2A13 and docked the substrate coumarin to the active site. Together with the kinetic characterization, our structural modeling provides explanations for the amino acid substitution results and the insights of detailed enzyme-substrate interactions.  相似文献   

15.
We sought to determine whether decreased in vitro GTPase activity is uniformly associated with ras p21 mutants possessing efficient transforming properties. Normal H-ras p21-[Gly12-Ala59] as well as an H-ras p21-[Gly12-Thr59] mutant exhibited in vitro GTPase activities at least fivefold higher than either H-ras p21-[Lys12-Ala59] or H-ras p21-[Arg12-Thr59] mutants. Microinjection of as much as 6 X 10(6) molecules/cell of bacterially expressed normal H-ras p21 induced no detectable alterations of NIH/3T3 cells. In contrast, inoculation of 4-5 X 10(5) molecules/cell of each p21 mutant induced morphologic alterations and stimulated DNA synthesis. Moreover, the transforming activity of each mutant expressed in a eukaryotic vector was similar and at least 100-fold greater than that of the normal H-ras gene. These findings establish that activation of efficient transforming properties by ras p21 proteins can occur by mechanisms not involving reduced in vitro GTPase activity.  相似文献   

16.
Selected amino acid residues in chicken nerve growth factor (NGF) were replaced by site-directed mutagenesis. Mutated NGF sequences were transiently expressed in COS cells and the yield of NGF protein in conditioned medium was quantified by Western blotting. Binding of each mutant to NGF receptors on PC12 cells was evaluated in a competition assay. The biological activity was determined by measuring stimulation of neurite outgrowth from chick sympathetic ganglia. The residues homologous to the proposed receptor binding site of insulin (Ser18, Met19, Val21, Asp23) were substituted by Ala. Replacement of Ser18, Met19 and Asp23 did not affect NGF activity. Modification of Val21 notably reduced both receptor binding and biological activity, suggesting that this residue is important to retain a fully active NGF. The highly conserved Tyr51 and Arg99 were converted into Phe and Lys respectively, without changing the biological properties of the molecule. However, binding and biological activity were greatly impaired after the simultaneous replacement of both Arg99 and Arg102 by Gly. The three conserved Trp residues at positions 20, 75 and 98 were substituted by Phe. The Trp mutated proteins retained 15-60% of receptor binding and 40-80% of biological activity, indicating that the Trp residues are not essential for NGF activity. However, replacement of Trp20 significantly reduced the amount of NGF in the medium, suggesting that this residue may be important for protein stability.  相似文献   

17.
Active gamma subunit of skeletal muscle phosphorylase kinase has been obtained by expression of the rat soleus cDNA in a baculovirus system. The protein exhibited the expected pH 6.8/8.2 activity ratio of 0.6, and its activity was insensitive to Ca2+ addition, indicating that it was free gamma subunit and not a gamma subunit-calmodulin complex. It was stimulated approximately 2-fold by Ca(2+)-calmodulin addition, demonstrating that it had retained high-affinity calmodulin binding. By site-directed mutagenesis, we have examined the role of six of the amino acids that constitute the consensus ATP binding site of the protein kinase, which in the gamma subunit is represented by the sequence 26Gly.Arg.Gly.Val.Ser.Ser.Val.Val33. Changes were evaluated by the kinetic determination of the dissociation constants of gamma-ATP, gamma-ADP, gamma-AMP.PCP, and gamma-phosphorylase and the maximum catalytic activity. The mutants Ser26-gamma, Ser29-gamma, Phe30-gamma, and Gly31-gamma each exhibited an essentially identical dissociation constant for gamma subunit phosphorylase, indicating that these mutations had not caused a global alteration in the protein structure but were limited to changes in the nucleotide binding site domain. Substitution of either Val33 (by Gly) or Gly28 (by Ser), two of the most conserved residues in all protein kinases, resulted in enzyme with marginally detectable activity. In noted contrast, the Ser26 mutant, which substituted the first glycine of the consensus glycine trio motif, and which is also very highly conserved, retained at least 25% of the enzymatic activity. The Gly31 substitution, which restored a glycine to a position characteristic for most protein kinases, had little overall effect upon the maximum rate of catalysis. Restoration of Ser30 to the more typical phenylalanine, which is present in most protein kinases, had minimal effect on catalysis. These data provide the first direct evaluation of the roles that different residues play within this consensus glycine trio/valine motif of the protein kinases, which up to now have only been surmised to be of importance because of their conservation. Two unexpected findings are that for one residue that is very conserved (Gly26) there is some flexibility of substitution not apparent from the evolutionary conservation and that a second quite conserved residue in protein kinases (equivalent to Gly at position 31) does not produce a protein optimized for nucleotide binding.  相似文献   

18.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

19.
The carboxyl-terminal region of theras oncogene-encoded p21 protein is critical to the protein's function, since membrane binding through the C-terminus is necessary for its cellular activity. X-ray crystal structures for truncated p21 proteins are available, but none of these include the C-terminal region of the protein (from residues 172–189). Using conformational energy analysis, we determined the preferred three-dimensional structures for this C-terminal octadecapeptide of the H-ras oncogene p21 protein and generated these structures onto the crystal structure of the remainder of the protein. The results indicate that, like other membrane-associated proteins, the membrane-binding C-terminus of p21 assumes a helical hairpin conformation. In several low-energy orientations, the C-terminal structure is in close proximity to other critical locales of p21. These include the central transforming region (around Gln 61) and the amino terminal transforming region (around Gly 12), indicating that extracellular signals can be transduced through the C-terminal helical hairpin to the effector regions of the protein. This finding is consistent with the results of recent genetic experiments.  相似文献   

20.
De novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α,β‐didehydroamino acids, especially α,β‐didehydrophenylalanine (ΔzPhe), comes in use for spawning well‐defined structural motifs. Introduction of ΔPhe induces β‐bends in small and 310‐helices in longer peptide sequences. The present work aims to investigate the effect of nature and the number of amino acids interspersed between two ΔPhe residues in two model undecapeptides, Ac‐Gly‐Ala‐ΔPhe‐Ile‐Val‐ΔPhe‐Ile‐Val‐ΔPhe‐Ala‐Gly‐NH2 (I) and Boc‐Val‐ΔPhe‐Phe‐Ala‐Phe‐ΔPhe‐Phe‐Leu‐Ala‐ΔPhe‐Gly‐OMe (II). Peptide I was synthesized using solid‐phase chemistry and characterized using circular dichroism spectroscopy. Peptide II was synthesized using solution‐phase chemistry and characterized using circular dichroism and nuclear magnetic resonance spectroscopy. Peptide I was designed to examine the effect of incorporating β‐strand‐favoring residues like valine and isoleucine as spacers between two ΔPhe residues on the final conformation of the resulting peptide. Circular dichroism studies on this peptide have shown the existence of a 310‐helical conformation. Peptide II possesses three amino acids as spacers between ΔPhe residues and has been reported to adopt a mixed 310/α‐helical conformation using circular dichroism and nuclear magnetic resonance spectroscopy studies. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号