首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin and C-peptide (free insulin and C-peptide in insulin-treated patients) were measured after glucose stimulation in nine Type II diabetics on chlorpropamide, eleven insulin-treated maturity-onset diabetics and in 8 normal controls. Dissociation between C-peptide and insulin response to glucose was observed in several diabetics. The relation between incremental molar areas under C-peptide and insulin curves, after glucose challenge (delta CPR - delta IRI/delta CPR) were used to evaluate the hepatic insulin extraction in all but the insulin-treated diabetics. The lower insulin requirements and better control of the short-duration insulin-treated maturity-onset diabetics in relation to the long-term ones could not be explained either by the residual insulin secretion or by the level of "insulin antibodies". The chlorpropamide-responsive patients presented higher insulin levels after the glucose challenge and a lower hepatic insulin extraction than the non-responsive ones.  相似文献   

2.
Sixteen insulin dependent diabetics of long standing, with undetectable fasting plasma C peptide concentrations, and eight non-diabetic controls were each infused intravenously with biosynthetic human and highly purified beef insulin (1 mU/kg/min) while euglycaemia was maintained by a Biostator. No difference was observed between the two insulins in respect of insulin pharmacokinetics or biological action. The diabetics showed appreciable insulin resistance, manifested by a 40% reduction in the rate of insulin mediated glucose disposal, which was unrelated to the presence of insulin antibodies. Insulin binding antibodies, however, increased insulin''s clearance rate and distribution space and prolonged its pharmacological and biological half lives. The rate at which insulin action was lost, after an intravenous infusion, was more rapid in diabetics without insulin antibody binding than in controls. In respect of their influence on insulin pharmacokinetics, moderate concentrations of insulin antibodies may be of positive advantage to all diabetics without endogenous insulin secretion and are not responsible for the insulin resistance of type 1 diabetes.  相似文献   

3.
Impaired insulin secretion in type 2 diabetes is characterized by decreased first-phase insulin secretion, an increased proinsulin-to-insulin molar ratio in plasma, abnormal pulsatile insulin release, and heightened disorderliness of insulin concentration profiles. In the present study, we tested the hypothesis that these abnormalities are at least partly reversed by a period of overnight suspension of beta-cell secretory activity achieved by somatostatin infusion. Eleven patients with type 2 diabetes were studied twice after a randomly ordered overnight infusion of either somatostatin or saline with the plasma glucose concentration clamped at approximately 8 mmol/l. Controls were studied twice after overnight saline infusions and then at a plasma glucose concentration of either 4 or 8 mmol/l. We report that in patients with type 2 diabetes, 1) as in nondiabetic humans, insulin is secreted in discrete insulin secretory bursts; 2) the frequency of pulsatile insulin secretion is normal; 3) the insulin pulse mass is diminished, leading to decreased insulin secretion, but this defect can be overcome acutely by beta-cell rest with somatostatin; 4) the reported loss of orderliness of insulin secretion, attenuated first-phase insulin secretion, and elevated proinsulin-to-insulin molar ratio also respond favorably to overnight inhibition by somatostatin. The results of these clinical experiments suggest the conclusion that multiple parameters of abnormal insulin secretion in patients with type 2 diabetes mechanistically reflect cellular depletion of immediately secretable insulin that can be overcome by beta-cell rest.  相似文献   

4.
Cardiac ultrastructure was studied in spontaneously diabetic BB rats maintained on two different regimens of insulin daily. For 3 months from the onset of overt diabetes, one diabetic group was well controlled with daily subcutaneous administration of sufficient insulin to prevent glycosuria (9.0-13.0 U/kg). Approximately half of this dose (4.5 U/kg) of insulin was given daily to a second group of diabetic rats. Normal Wistar rats and nondiabetic BB rats were used as controls. Blood glucose values were three- to four-fold higher with respect to these controls in the diabetic BB rats receiving the smaller dose of insulin but were significantly lower than controls in diabetic animals receiving the higher insulin dose. A 30% difference in body weight with respect to the Wistar controls, obvious hyperliposis, and some nerve degeneration were seen in the low dose insulin group of diabetics. Such changes did not occur in the well-controlled insulin-treated group. Electron microscopic examination of the left ventricular tissue revealed mild damage in both groups of diabetics consisting of small focal lesions and mild edema along the sarcoplasmic reticulum and sometimes adjacent to the sarcolemma. Thus, insulin treatment, which prevented glycosuria, resulted in normal tissue lipid levels and prevented nerve damage but had little effect on the other diabetes-induced ultrastructural alterations in the myocardium of these rats.  相似文献   

5.
Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness (Sg), insulin sensitivity (Si), and the disposition index (DI), only Si can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring Si in lean and obese mice. Insulin-resistant mice had increased first-phase insulin secretion, decreased Sg, and a reduced DI, qualitatively similar to humans. Intriguingly, although insulin secretion explained most of the variation in glucose disposal in lean mice, Sg and the DI more strongly predicted glucose disposal in obese mice. DI curves identified individual diet-induced obese (DIO) mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, Sg, and DI, and further validates the mouse as a model of metabolic disease.  相似文献   

6.
Blood glucose, insulin and prolactin concentrations were determined before and after sulpiride injection (50 mg i.m.) in 20 non-insulin-dependent diabetic patients (10 with retinopathy and 10 without evidence of retinal damage) and 10 subjects with normal glucose tolerance. Prolactin response to sulpiride was significantly higher in diabetics than in controls (at 20 min., p less than 0.01; at 30 and 60 min., p less than 0.005; at 90 min., p less than 0.01; at 120 min., p less than 0.05). The sulpiride induced hyperprolactinemia did not influence blood glucose and plasma insulin levels in controls as well as in diabetic patients. Prolactin response to sulpiride was the same in diabetics with and in those without retinal changes. We conclude that acute hyperprolactinemia seems to have no influence on glucose homeostasis in normal and non insulin-dependent diabetic subjects.  相似文献   

7.
A kinetic model for insulin secretion in pancreatic β-cells is adapted from a model for fast exocytosis in chromaffin cells. The fusion of primed granules with the plasma membrane is assumed to occur only in the “microdomain” near voltage-sensitive L-type Ca2+-channels, where [Ca2+] can reach micromolar levels. In contrast, resupply and priming of granules are assumed to depend on the cytosolic [Ca2+]. Adding a two-compartment model to handle the temporal distribution of Ca2+ between the microdomain and the cytosol, we obtain a unified model that can generate both the fast granule fusion and the slow insulin secretion found experimentally in response to a step of membrane potential. The model can simulate the potentiation induced in islets by preincubation with glucose and the reduction in second-phase insulin secretion induced by blocking R-type Ca2+-channels (CaV2.3). The model indicates that increased second-phase insulin secretion induced by the amplifying signal is controlled by the “resupply” step of the exocytosis cascade. In contrast, enhancement of priming is a good candidate for amplification of first-phase secretion by glucose, cyclic adenosine 3′:5′-cyclic monophosphate, and protein kinase C. Finally, insulin secretion is enhanced when the amplifying signal oscillates in phase with the triggering Ca2+-signal.  相似文献   

8.
To fulfill its preeminent function of regulating glucose metabolism, insulin secretion must not only be quantitatively appropriate but also have qualitative, dynamic properties that optimize insulin action on target tissues. This review focuses on the importance of the first-phase insulin secretion to glucose metabolism and attempts to illustrate the relationships between the first-phase insulin response to an intravenous glucose challenge and the early insulin response following glucose ingestion. A clear-cut first phase occurs only when the beta-cell is exposed to a rapidly changing glucose stimulus, like the one induced by a brisk intravenous glucose administration. In contrast, peripheral insulin concentration following glucose ingestion does not bear any clear sign of biphasic shape. Coupling data from the literature with the results of a beta-cell model simulation, a close relationship between the first-phase insulin response to intravenous glucose and the early insulin response to glucose ingestion emerges. It appears that the same ability of the beta-cell to produce a pronounced first phase in response to an intravenous glucose challenge can generate a rapidly increasing early phase in response to the blood glucose profile following glucose ingestion. This early insulin response to glucose is enhanced by the concomitant action of incretins and neural responses to nutrient ingestion. Thus, under physiological circumstances, the key feature of the early insulin response seems to be the ability to generate a rapidly increasing insulin profile. This notion is corroborated by recent experimental evidence that the early insulin response, when assessed at the portal level with a frequent sampling, displays a pulsatile nature. Thus, even though the classical first phase does not exist under physiological conditions, the oscillatory behavior identified at the portal level does serve the purpose of rapidly exposing the liver to elevated insulin levels that, also in virtue of their up-and-down pattern, are particularly effective in restraining hepatic glucose production.  相似文献   

9.
Administration of a low-dose insulin infusion to normal subjects results in a mild drop in blood glucose concentration (1.1 mmol/1 (20 mg/100 ml)) and the resetting of the basal glucose at the lower concentration. Clinical hypoglycaemia does not develop, and there is a significant release of glucagon, growth hormone, and cortisol. A similar infusion in insulin-requiring diabetics results in hypoglycaemia accompanied by a release of growth hormone and cortisol but no significant release of glucagon. Subsequently giving arginine to these patients results in a significant release of glucagon, indicating that the alpha cell is intact and can respond to local, direct stimulation. In one patient the defect in glucagon response to impending hypoglycaemia developed after two years'' insulin treatment. This type of dissociated response'' of the alpha cell has been reported in animals after denervation of the pancreas, and insulin-requiring diabetics may develop a selective form of autonomic neuropathy affecting the vagal control of glucagon release.  相似文献   

10.
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9–39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a “spillover” effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9–39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test, that is, diagnostic of type 2 diabetes in the clinical setting.  相似文献   

11.
The objective of this study was to test the hypothesis that high-frequency oscillations in insulin release is a part of the mechanistic basis of a prompt and adequate insulin response to iv-glucose and GLP-1 exposure. In ten healthy subjects, five different insulin release patterns were induced for 360 min using computer-based glucose infusion (glucose delivered in a constant, a regular pulsatile, an irregular pulse frequency, an irregular pulse amplitude or a regular but very fast-pulsatile manner) in healthy subjects. The amount of glucose infused was identical in all five protocols (24 mg/kg/h). After 360 min, insulin secretion was assessed by means of a first-phase insulin secretion test (25 g glucose) and injection of GLP-1 (9 microg). By frequent blood sampling and analysis of insulin concentration, glucose-induced entrainment was evident in all protocols except in the constant infusion and the very fast-pulse protocol. The first-phase insulin release to glucose and GLP-1-induced insulin release were, however, comparable in the protocols. We therefore conclude from this short-term experimental setting in healthy subjects that beta-cell response to either iv-glucose or GLP-1 is independent of the preceding regularity of oscillations in insulin release.  相似文献   

12.
It is commonly accepted that insulin secretion follows the pattern of an inverted U, also termed 'Starling's curve of the pancreas' during the natural history of hyperglycemia in glucose intolerance and type 2 diabetes. This concept is based on the cross-sectional observation that insulin concentrations initially increase when insulin sensitivity declines (as a consequence of obesity, for example) and decrease when glucose tolerance deteriorates (impaired glucose tolerance or overt type 2 diabetes). The initial increase in insulin concentrations has been viewed as 'hypersecretion' of insulin, thought to indicate that beta cell dysfunction is not etiological but secondary in nature. However, this view is oblivious to the now well-established fact that assessment of insulin secretion must account for individual insulin sensitivity. Here, we revisit the concept of Starling's curve of the pancreas based on first-phase C-peptide concentrations (hyperglycemic clamp) from subjects with normal glucose tolerance (n=66), impaired glucose tolerance (n=19) and mild type 2 diabetes (n=9). In absolute terms, first-phase C-peptide concentrations plotted against increasing fasting glucose concentrations indeed followed an inverted U. However, adjusted for direct and indirect measures of insulin sensitivity (insulin sensitivity index from the hyperglycemic clamp, body mass index, age and sex), first-phase C-peptide concentrations of the same individuals tended to decrease steadily. In conclusion, while the Starling curve exists for insulin concentrations, and perhaps also for insulin secretion, it does not hold for beta-cell function if that term were to imply appropriateness of insulin secretion (based on a formal test of glucose-stimulated insulin secretion) for the degree of insulin resistance, as it should.  相似文献   

13.
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8‐20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow‐, fast‐, and constant‐rate secretors, with slow‐secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short‐term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high‐glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high‐glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low‐glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open‐ended questions on pre‐diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059–1068, 2018  相似文献   

14.
Glucose and insulin secretory response patterns during glucose tolerance tests were determined in 28 maturity-onset diabetics, and the sequential effects of diet and a sulphonylurea, tolazamide, were assessed. Untreated diabetics showed hyperglycaemia, increased serum immunoreactive insulin response patterns, delayed insulin release, and relative insulin deficiency. Diet alone partially corrected the hyperglycaemia and serum immunoreactive insulin response but had no effect on the delayed insulin release or relative insulin deficiency. Tolazamide plus diet restored all values towards normal. The net effect of maintenance tolazamide therapy was to (1) restore the insulin secretory response pattern to normal, (2) reduce total pancreatic insulin output, and (3) improve the efficiency of insulin secretion. The results suggest that there is a rational basis for the use of sulphonylurea in all maturity-onset diabetics, including patients with mild carbohydrate intolerance and those who are apparently controlled by diet alone.  相似文献   

15.
Fasting plasma concentrations of magnesium were measured by neutron activation analysis in 30 non-diabetics and 87 diabetics (55 non-insulin-treated, 32 insulin treated). Plasma concentrations of magnesium were lowest in the insulin treated group (mean 0.84 (SEM 0.01) mmol/1; 2.0 (0.02) mg/100 ml), intermediate in the non-diabetics (mean 0.89 (SEM 0.01) mmol/1; 2.2 (0.02) mg/100 ml), and highest in the non-insulin-treated diabetics (mean 0.95 (SEM 0.02) mmol/1; 2.3 (0.05) mg/100 ml). In all diabetics plasma magnesium concentrations were inversely related to plasma glucose values (rs = -0.33; p less than 0.01) and in non-insulin-treated patients to plasma insulin concentrations (rs = -0.28; p less than 0.05), the former confirming previous observations. In 67 of the diabetics the KG constant for disposal rate of glucose during a standard intravenous glucose tolerance test was directly related to fasting plasma magnesium concentrations, and this relation persisted after controlling for age, sex, body mass index, type of treatment, and glucose and insulin values. This direct relation of plasma magnesium concentration with glucose disposal was unexplained by its influence on insulin secretion but was related to insulin sensitivity; hence magnesium may be an important determinant of insulin sensitivity in maturity onset diabetes.  相似文献   

16.
Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin‐positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose‐stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated‐insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non‐bioreacted static controls. More insulin‐ and glucagon‐positive structures, and extensive intact endothelial structures were observed compared to non‐bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432–444, 2018  相似文献   

17.
To further investigate the GH secretion in juvenile diabetics, blood glucose (BG) and plasma growth hormone (GH) were determined during controlled exercise performed in basal condition and under glucose infusion, in 7 controls and 22 juvenile diabetics aged 12--35 years, 10 of them with fundal vascular lesions. In controls, glucose infusion significantly lowered the exercise induced GH rise observed under basal conditions. In diabetics, under basal conditions, diabetics with low basal BG (BG less than 100 mg/100ml) had higher GH secretion than those with high basal BG (BG greater than 140 mg/100 ml; p less than 0.05). Under glucose infusion, diabetics with normal BG peak values (not different from controls: BG = 284 +/- (SK) 45 mg/100 ml) had significantly higher plasma GH levels than controls (p less than 0.01). In contrast, in diabetics with BG peak value higher than controls (BG greater than 374 ng/100 ml), plasma GH levels were not different from control values. This study indicates that exercise induced GH secretion in diabetics is mainly related to actual BG levels. Furthermore, we found no relation between the magnitude of GH secretion and the presence of retinopathy in diabetics.  相似文献   

18.
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.  相似文献   

19.
Beta cell function, peripheral sensitivity to insulin and specific pancreatic autoimmunity were studied in 30 youngsters with cystic fibrosis (CF) accurately selected in order to fulfill the criteria for normal glucose tolerance. With respect to weight-matched controls, patients with CF exhibited a significantly lower glucose tolerance and a globally preserved, although delayed, insulin response to oral glucose tolerance test, while first-phase insulin secretion after i.v. glucose was blunted. Peripheral sensitivity to insulin, assessed in vivo by both the euglycemic clamp technique and the number of insulin receptors, directly measured in circulating monocytes, was superimposable in patients and controls. Serum islet-cell antibodies were not found in any of the patients. In conclusion, disorders of beta cell function may be observed in CF patients even when glucose tolerance is within the normal range. Such abnormalities are not associated with changes in peripheral sensitivity to insulin and do not seem to depend on specific autoimmune events.  相似文献   

20.
Islets in most species respond to increased glucose with biphasic insulin secretion, marked by a sharp first-phase peak and a slowly rising second phase. Mouse islets in vitro, however, lack a robust second phase. To date, this observation has not been extended in vivo. We thus compared insulin secretion from conscious mice with isolated mouse islets in vitro. The arterial plasma insulin response to a hyperglycemic clamp was measured in conscious mice 1 wk after surgical implantation of carotid artery and jugular vein catheters. Mice were transfused using clamps with blood from a donor mouse to maintain blood volume, allowing frequent arterial sampling. When plasma glucose in vivo was raised from approximately 5 to approximately 13 mM, insulin rose to a first-phase peak of 403+/-73% above basal secretion (n=5), followed by a rising second phase of mean 289+/- 41%. In contrast, perifused mouse islets ( approximately 75 islets/trial) responded with a similar first phase of 508+/- 94% (n=4) but a smaller and virtually flat second phase of 169+/- 9% (n=4, P<0.05). Furthermore, the slope of the second-phase response differed significantly from zero in mice (2.63+/-0.39%/min, P<0.01), in contrast to perifused islets (0.18+/- 0.14%/min, P>0.30). Mice also displayed pulsatile patterns in insulin concentration (period: 4.2+/- 0.4 min, n=8). Conscious mice thus responded to increased glucose with biphasic and pulsatile insulin secretion, as in other species. The robust second phase observed in vivo suggests that the processes needed to generate second-phase insulin secretion may be abrogated by islet isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号