首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human brain α-L-fucosidase has been extracted and the soluble portion has been purified 9388-fold with 25% yield by a two-step affinity chromatographic procedure utilizing agarose-epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all seven isoelectric forms of the enzyme were purified. Trace amounts of eight glycosidases, with hexosaminidase being the largest contaminant (1% by activity) were found in the purified α-L-fucosidase preparation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a single subunit of molecular weight 51,000 ± 2500. The purified enzyme has a pH optimum of 4.7 with a suggested second optimum of 6.6. The apparent Michaelis constant and maximal velocity of the purified enzyme with respect to the p-nitrophenyl substrate are 0.44 mM and 10.7 μmol/min/mg protein, respectively. Ag2+ and Hg2+ completely inactivated the enzyme at concentrations of 0.1-0.3 mM. Antibodies made previously against purified human liver α-L-fucosidase cross-reacted with the purified brain α-L-fucosidase and gave a single precipitin line coincident with that from purified liver α-L-fucosidase. From all our studies it appears that at least the soluble portion of brain α-L-fucosidase is identical to human liver α-L-fucosidase.  相似文献   

2.
Glutamine requirements are increased during injury, in particular to sustain the needs of rapidly growing cells. This includes fibroblasts involved in wound healing. α-Ketoglutarate (α-KG) has been proved to be a potent precursor of glutamine. However, little is known about the process of its cell uptake. Since this first step could be crucial in α-KG metabolism, we have characterized α-ketoglutarate uptake in fibroblasts. Total uptake of α-ketoglutarate was linear up to 1mmol and temperature independent. Rate of uptake was independent of the presence of Na+in the medium. Competition studies with another ketoacid demonstrated the non-specificity of α-ketoglutarate uptake. In addition, 4-hydroxy-α-cyanocinnamate, a known inhibitor of anion transport, was ineffective on α-ketoglutarate uptake. Taken as a whole, these data provide evidence that α-ketoglutarate uptake in fibroblast occurs by an unmediated diffusion process. This suggests that α-ketoglutarate uptake is not the controlling step in fibroblasts, i.e. only the availability of extracellular α-ketoglutarate. This could be an advantage since during injury, cell membrane depolarization and dissipation of Na+gradient may limit cellular glutamine uptake.  相似文献   

3.
A novel technique has been employed to demonstrate that α-L-fucosidase purified from cystic fibrosis and control livers exhibits differential binding to the lectin Concanavalin A. The concentration of α-CH3-mannoside necessary to prevent 50% binding of α-L-fucosidase to Concanavalin A is considerably lower for the cystic fibrosis enzyme (13.5 vs. 33.3 mM). Comparable results were found when binding studies were done on crude supernatant α-L-fucosidase from 8 cystic fibrosis and 8 control livers (5.6 ± 0.4 mM and 13.2 ± 3.4 mM, respectively), without any overlap of values between the cystic fibrosis and control livers. These results suggest that comparative lectin binding studies on cystic fibrosis and normal glycoproteins from readily available tissues might result in an assay for detecting the cystic fibrosis genotype.  相似文献   

4.
The combined deficiency of β-galactosidase and neuraminidase in human fibroblasts can be corrected to nearly normal values. This can be accomplished by addition of concentrated culture medium obtained after NH4Cl stimulation of different types of human fibroblasts, including those with an isolated β-galactosidase or neuraminidase deficiency. The corrective factor is a macromolecular glycoprotein, which is labile at 60°C. Its uptake by human fibroblasts is competitively inhibited by mannose-6-phosphate and its corrective action within β-gal?/neur? fibroblasts continues during a “chase” of 72 hours.  相似文献   

5.
beta-Glucuronidase secreted by mouse 3T3 fibroblasts in vitro was taken up into mouse peritoneal macrophages and into human fibroblasts by a process which was rapid and saturable. High concentrations of mannose-containing compounds inhibited uptake into macrophages but had no effect on uptake into fibroblasts. Mannose-6-phosphate inhibited uptake into both types of cell, reducing uptake into macrophages by 34% and abolishing uptake into fibroblasts completely at a concentration of 5 mM. Fructose-1-phosphate was almost equally as effective at inhibiting uptake into fibroblasts but had no effect on macrophages. Pre-treatment of beta-glucuronidase with alkaline phosphatase totally prevented its uptake into fibroblasts but had no effect on its uptake into macrophages. These results indicate that fibroblasts can secrete a lysosomal enzyme in a form recognised as a high uptake ligand not only by other fibroblasts but also by peritoneal macrophages and that endocytosis appears to be mediated by different receptors present on each type of cell. This has important implications for the potential treatment of mucopolysaccharidoses by fibroblast transplants.  相似文献   

6.
β-Glucuronidase secreted by mouse 3T3 fibroblasts in vitro was taken up into mouse peritoneal macrophages and into human fibroblasts by a process which was rapid and saturable. High concentrations of mannose-containing compounds inhibited uptake into macrophages but had no effect on uptake into fibroblasts. Mannose-6-phosphate inhibited uptake into both types of cell, reducing uptake into macrophages by 34% and abolishing uptake into fibroblasts completely at a concentration of 5 mM. Fructose-1-phosphate was almost equally as effective at inhibiting uptake into fibroblasts but had no effect on macrophages. Pre-treatment of β-glucuronidase with alkaline phosphatase totally prevented its uptake into fibroblasts but had no effect on its uptake into macrophages. These results indicate that fibroblasts can secrete a lysosomal enzyme in a form recognised as a high uptake ligand not only by other fibroblasts but also by peritoneal macrophages and that endocytosis appears to be mediated by different receptors present on each type of cell. This has important implications for the potential treatment of mucopolysaccharidoses by fibroblast transplants.  相似文献   

7.
Phosphopentomutase (PPM) catalyzes the interconversion of α-d-(deoxy)-ribose 1-phosphate and α-d-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on d-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-d-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s−1 at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date.  相似文献   

8.
Glucosamine-6-phosphate (GlcN-6-P) synthase from Saccharomyces cerevisiae was expressed in Pichia pastoris SMD1168 GIVING maximum activity of 96 U ml?1 for the enzyme in the culture medium. By SDS-PAGE, the enzyme, a glycosylated protein, had an apparent molecular mass of 90 kDa. The enzyme was purified by gel exclusion chromatography to near homogeneity, with a 90 % yield and its properties were characterized. Optimal activities were at pH 5.5 and 55 °C, respectively, at which the highest specific activity was 6.8 U mg protein ?1. The enzyme was stable from pH 4.5 to 5.5 and from 45 to 60 °C. The Km and Vmax of the GlcN-6-P synthase towards d-fructose 6-phosphate were 2.8 mM and 6.9 μmol min?1 mg?1, respectively.  相似文献   

9.
Long - lasting synchrony of the division of enteric bacteria   总被引:5,自引:0,他引:5  
Recent finding of α-N-acetylglucosamine(1)phospho(6)mannose diesters in lysosomal enzymes suggested that formation of mannose 6-phosphate residues involves transfer of N-acetylglucosamine 1-phosphate to mannose. Using dephosphorylated β-hexosaminidase as acceptor and [β-32P]UDP-N-acetylglucosamine as donor for the phosphate group, phosphorylation of β-hexosaminidase by microsomes from rat liver, human placenta and human skin fibroblasts was achieved. The reaction was not affected by tunicamycin. Acid hydrolysis released mannose 6-[32P]phosphate from the phosphorylated β-hexosaminidase. Our results suggest that lysosomal enzymes are phosphorylated by transfer of N-acetylglucosamine 1-phosphate from UDP-N-acetylglucosamine. The transferase activity was deficient in fibroblasts from patients affected with l-cell disease. This deficiency is proposed to be the primary enzyme defect in l-cell disease.  相似文献   

10.
SYNOPSIS. Hartmannella (Culbertson strain A-1) was found to undergo encystment (80–90% in 72 hr) on a non-nutrient agar containing 0.015 M MgCl2 and 0.02 M taurine. Encystment was completely inhibited by 1 × 10?5 M Mitomycin C, or 1 × 10?7 M cycloheximide or 1 × 10?6 M Actinomycin D. The ability of the amoebae to consume glucose increased fourfold within 24 hr incubation in this medium. The specific activities of cellulose synthetase, hexosephosphate transaminase and uridine diphosphosphoglucose pyrophosphorylase were also stimulated. Dehydrogenases mediating electron transfer from pyruvate, malate, succinate, α-ketoglutarate and α-glycerophosphate to triphenyltetrazolium and from glucose-6-phosphate to nicotinamide-adenine dinucleotide phosphate were, however, repressed during this period of incubation in the encystment medium. The results suggested that, during encystment of Hartmannella A-1, there was a metabolic switchover and the enzyme machinery of the amoeba was oriented more towards biosynthesis of cyst wall constituents than towards the aerobic breakdown of carbohydrates.  相似文献   

11.
Nil hamster fibroblasts depleted of NAD(H) by growth in medium devoid of nicotinamide (NAm?MEM) exhibit up to 2-3-fold higher rates of glucose transport. Derepression of glucose transport is observed only when Nil cells have become severely depleted of both intracellular NAD(H) and ATP, despite the continued presence of 5.5 mM D-glucose in the growth medium. Neither the initial rate of transport, approximated from 3-O-methylglucose uptake, nor accumulation of D-glucose itself is repressed upon restoring nicotinamide to the medium. Exposure of the cells to NAD+ (10?5 M), however, leads to a sharp curtailment of transport within 2 to 3 hours. The purines, hypoxanthine and guanine, that sharply reduce glucose transport capacity of normal cells, have no significant effect upon transport activity of NAD(H)-depleted cells.  相似文献   

12.
Human erythrocyte apotransketolase (EC 2.2.1.1) has been isolated with greater than 400 fold purification, and free of glyceraldehyde-3-phosphate dehydrogenase. The preparation has an absolute requirement for thiamin pyrophosphate in order to exhibit enzyme activity. Neither thiamin nor thiamin monophosphate could substitute for this requirement, nor were they inhibitory separately or together at concentrations of 1 mM. The Km for thiamin pyrophosphate was 0.4 μM. The Km for ribose-5-phosphate was 3 × 10?4M and for xylulose-5-phosphate 1.8 × 10?4M.  相似文献   

13.
Hexose 1-phosphate uridylyltransferase (EC 2.7.7.12) was present constitutively in Bifidobacterium bifidum. The enzyme was purified to a homogeneous state from B. bifidum grown on a glucose medium and characterized. The molecular weight of the enzyme is about 110,000.The pH optimum of the enzyme was 7.5. The enzyme was very labile on the acidic side below pH 4.5. Thymidine diphosphate glucose could serve as a substrate with about 60% efficiency of UDP-glucose. The Km values for UDP-gtucose, galactose 1-phosphate (Gal-l-P), UDP-galactose and glucose 1-phosphate (Glc-1-P) were estimated to be 2.3×10?5M, 5.0 × 10?4M, 3.1 × 10?5 M and 1.4 × 10?4M, respectively. From these results the physiological roles of the enzyme were considered in relation to galactose metabolism in B. bifidum.  相似文献   

14.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

15.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

16.
The surface membranes of human neuroblastoma cells contain a fucosyl linkage, defined by using an α-L-fucosidase from almond emulsin specific for the cleavage of Fucα1→3G1cNAc and Fucα1→4G1cNAc. These linkages are not found in significant amounts on the surface of mouse neuroblastoma cells, or human or hamster fibroblasts. The enzyme released fucose from glycoproteins as well as glycopeptides, making it particularly useful for invivo studies.  相似文献   

17.
Nitrate-cultured cells of Phaeodactylum tricornutum Bohlin lack the ability to take up guanine but can do so after a period of nitrogen deprivation, i.e. photosynthesis in nitrogen-free medium. Maximum rate of uptake occurred after 24 h of nitrogen deprivation. The development of ability to take up guanine required CO2 fixation and was prevented by cycloheximide, ammonium or nitrate. The guanine taken up accummulated in the cells almost entirely as a compound which is probably methylated hypoxanthine. Guanine uptake was dependent upon metabolism and exhibited Michaelis-Menten like kinetics with a half-saturation value of 0.48 ± 0.05 μM guanine and a maximum uptake rate for guanine of ca. 200 nmol · 10?8 cells · h?1. Rate of uptake increased hyperbolically with Na+ concentration, with 8.25 mM Na+ supporting half-maximal rate, and it was inhibited by K+ ions.  相似文献   

18.
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogeneity and found to be a new type of transketolase. The molecular weight of the enzyme was estimated to be 190 000 by gel filtration. The enzyme appeared to be composed of four identical subunits (Mr, 55 000). Thiamin pyrophosphate and Mg2+ were required for the activity. The optimum pH was found to be 7.0. With xylulose 5-phosphate as the ketol-donor, aliphatic aldehydes (C1?C7), glycolaldehyde and glyceraldehyde were better acceptors than ribose 5-phosphate. The kinetic data were consistent with a ping-pong bi-bi mechanism. The Km values obtained were as follows: xylulose 5-phosphate, 1.0 nM; formaldehyde, 0.43 mM; glyceraldehyde 3-phosphate, 0.42 mM; and dihydroxyacetone, 0.52 mM.  相似文献   

19.
Evidence is presented to show that all enzymes and all intermediary metabolites of a UDPglucose biosynthesis pathway are present in the microsomal membranes of rat liver. Glucose 6-phosphate, glucose 1-phosphate and UDPglucose are characterized by chromatography.The properties of phosphoglucomutase and UTP: D-Glucose-1-phosphate uridyltransferase are studied. The Km values of phosphoglucomutase at pH 7.2 and 42°C were 0.26 · 10?3 mM for glucose 1,6-diphosphate and 80 · 10?3 mM for glucose 1-phosphate. The Km values of UTP: D-glucose-1-phosphate uridyltransferase at pH 8.5 and 37°C were 220 · 10?3 mM for UTP and 166 · 10?3 mM for glucose 1-phosphate. These values are compared to the given values for enzymes from different species, and to those found for soluble enzymes. The significance of this membranous pathway is discussed.  相似文献   

20.
The combined effect of macronutrients in the extraction medium on α-amylase produced by Bacillus subtilis were studied by using response surface methodology in shaken flask cultures. The production of amylase was significantly affected by the interaction between wheat bran and the cotton seed extract in the extraction medium and by the interaction between the cotton seed extract and starch. The optimal combination in the extraction medium for maximum α-amylase production was determined as 10.80 g·L?1 of wheat bran, 9.90 g·L?1 of cotton seed extract, 0.5 g·L?1 of starch, 2.0 g·L?1 of yeast extract, 5.00 g·L?1 of NaCl and 2.00 g·L?1 of CaCl2. A 12.55-fold increase of enzyme activity was recorded in the optimized medium compared to the result acquired in a minimum essential medium. The optimized medium was used to compare different cultivation strategies in fermenters. The pH-stat strategy for reducing cellular stress response and the substrate concentration-stat strategy for reducing substrate inhibition were independently investigated. The temperature-limited strategy has been proposed to solve the proteolytic digestion problem, although the high-pressure strategy resulted in high productivity. A hybrid strategy simultaneously controlling pH, temperature, substrate concentration and pO2 was finally investigated to enhance the efficiency of the process. This hybrid strategy resulted in high activity of α-amylase, increasing the productivity almost three-fold as compared to an ordinary fed-batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号