首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4−10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

2.
Sympathetic nerve stimulation of the perfused mesenteric arterial bed of the rabbit, , increase the secretion of prostaglandin (PG)I2 and PGE2. Prazosin (4.8 × 10−6), and α1 adrenergic receptor antagonist, inhibited this inrease in release of PGI2 but not of PGE2 whereas rauwolsin (10−7 M), an α2 adrenergic receptor antagonist, inhibited the increase in release of PGE2 but not of PGI2. Prazosin (10−6 M) completely blocked the vasoconstrictor response to nerve stimulation, and to norepinephrine and phenylephrine administration, suggesting there to be little of an α2 adrenergic receptor component in this response. It is concluded that the increase in PGI2 release follows the activation of α1 adrenergic receptors and is therefore post-junctional in origin, whereas the increase in PGE2 release follows the activation of α2 adrenergic receptors and may be pre- and/or post-junctional in origin.Indomethacin (2.8 × 10−7, 5.6 × 10−7 and 1.12 × 10−6 M did not affect the vasoconstrictor responses to nerve stimulation at 10 Hz, whereas rauwolsin (10−7 M) in the presence of indomethacin substantially increased them. These results indicate that PGE2 does not regulate norepinephrine release following nerve stimulation at 10 Hz to rabbit mesenteric arteries, and that the inhibition of norepinephrine release following stimulation of α2 pre-junctional receptors is independent of PG involvement.  相似文献   

3.
Prostaglandin I2 potentiated the paw swelling induced by carrageenin in rats. Prostaglandin I2 (0.1 μg) showed similar activity to PGE1 (0.01 μg). This potentiating property disappeared in 60 minutes and was completely abolished by diphenhydramine (25 mg kg−1, i.p.). In vascular permeability tests, PGI2 itself (2.5 × 10−10 mol, 88 ng) caused no dye leakage reaction, but PGE1 (2.5 × 10−10 mol, 88.5 ng) caused a significant dye leakage. This effect of PGE1 was statistically significant compared with vehicle- or PGI2-treated group (p<0.05). Prostaglandin I2 potentiated the increased vascular permeability induced by 5-hydroxytriptamine (2.5 × 10−10 mol), bradykinin (5 × 10−10 mol) and histamine (2 × 10−10 to 2 × 10−8 mol). The potentiation was the most evidence in the case of histamine.  相似文献   

4.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4 × 10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

5.
The effects of various II-deoxyprostaglandin E analogs on the basal and prostaglandin E2 (PGE2)-induced cyclic AMP accumulation in the rat anterior pituitary were studied in vitro. 13-Hydroxy-9-oxoprost-14-ynoic acid at 5 × 10−4M, but not 5 × 10−5M, decreased (45%) the induced accumulation and did not alter the basal accumulation; 15-hydroxy-9-oxoprost-13-ynoic acid at 5 × 10−4M caused less of a decrease (29%) in the induced and also did not alter the basal accumulation. (14Z)-13-Hydroxy-9-oxoprost-14-enoic acid at 5 × 10−4M did not alter the induced and caused a slight increase (5 fold) in the basal accumulation. 7-Oxa-13-prostynoic acid increased slightly the basal accumulation at 5 × 10−5M (2 fold) and 2.33 × 10−4M (6 fold) and did not antagonize the induced accumulation. Thus, the 9-ketoprostynoic acids are effective PGE2 antagonists in this system.  相似文献   

6.
The effects of various 11-deoxyprostaglandin E analogs on the basal and prostaglandin E2 (PGE2)-induced cyclic AMP accumulation in the rat anterior pitutiary were studied . 13-Hydroxy-9-oxoprost-14-ynoic acid at 5 × 10−4M, but not 5 × 10−5M, decreased (45%) the induced accumulation and did not alter the basal accumulation; 15-hydroxy-9-oxoprost-13-ynoic acid at 5 × 10−4M caused less of a decrease (29%) in the induced and also did not alter the basal accumulation. (14Z)-13-Hydroxy-9-oxoprost-14-enoic acid at 5 × 10−4M did not alter the induced and caused a slight increase (5 fold) in the basal accumulation. 7-Oxa-13-prostynoic acid increased slightly the basal accumulation at 5 × 10−5M (2 fold) and 2.33 × 10−4M (6 fold) and did not antagonize the induced accumulation. Thus, the 9-ketoprostynoic acids are effective PGE2 antagonists in this system.  相似文献   

7.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10−10–10−9M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10−5M) and FPL55712 (10−6M). In doses over 10−8M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10−5 or 5 × 10−5M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10−9M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 × 10−7M). However, indomethacin (10−5M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

8.
Mouse calvaria were maintained in organ culture without serum additives. Basal active resorption, as measured by 45Ca and hydroxyproline release, was significantly inhibited to 74% control levels by indomethacin (1.4 × 10−7 M). Prostaglandin F and prostaglandin E2 production, determined by radioimmunoassay, were both significantly lowered by this concentration of indomethacin. DNA, protein and hydroxyproline synthesis, as indices of cell toxicity, were unaffected by low concentrations of indomethacin, while concentrations of 1.4 × 10−6M inhibited protein synthesis (p<0.005). In the presence of indomethacin (1.4 × 10−7M) both PGE2 and PGF stimulated resorption in a dose-dependent manner, with PGE2 being the more potent. Neither prostaglandin affected hydroxyproline synthesis at low concentrations, but PGE2 had a marked inhibitory action at a higher concentration (10−6M). In combination, the effects of PGE2 and PGF showed no evidence of synergism or any antagonistic action. The study shows that in vitro calcium and hydroxyproline resorption in the unstimulated mouse calvaria are inhibited by indomethacin at concentrations measured in serum during human therapy. The decreased PGF and PGE2 production associated with this decreased bone resorption in the presence of non-toxic concentrations of indomethacin would suggest a role for these prostaglandins in maintaining the basal resorption of cultured bone.  相似文献   

9.
We have established primary colonic epithelial cell culture from adult rabbits and examined effects of anti-inflammatory drugs on prostaglandin (PG) E2 production. Colonic epithelium of adult rabbits was scraped and minced into small pieces. They were incubated for isolation in Hanks' balanced salt solution with 0.35 % collagenase and Earle's solution with 1 mM EDTA. Isolated cells were cultured in Coon's modified Ham's F-12 medium with 10 % fetal bovine serum and antibiotics on collagen coated cell wells. The medium was refed twice a week. The production of PGs was assessed by high pressure liquid chromatography (HPLC). PGE2 and PGF were measured by radioimmunoassay. Within 24 hours after inoculation, the cell clumps attached to the surface of the wells and cells began to spread out and grow. Monolayer cultures became confluent in 4 days. Phase contrast microscopy showed that these cells consisted of a homogeneous population of epithelial cells with large oval nuclei, polyhedral shape, and organized sheet-like growth pattern. HPLC profile showed synthesis of 6-keto-PGF, thromboxane B2, PGF, PGE2, and PGD2 by cultured cells. Quantitatively, 117±7 ng/mg-protein/hour PGE2 by 7.4±0.7 ng/mg-protein/hour PGF were produced. While hydrocortisone (10−4-10−2 M) did not show a significant effect on PGE2 production, indomethacin (10−8-10−6 M), and 5-aminosalicylic acid (2×10−4-5×10−3 M) inhibited PGE2 production. We have established relatively convenient procedure for primary culture of colonic epithelial cells from adult rabbits. Different actions of anti-inflammatory drugs on PGE2 synthesis suggest that these cultured cells might be a good tool for the various cellular functional studies of normal colonic epithelial cells.  相似文献   

10.
Specificity of the effect of prostaglandins (PGs) on hormone release by the anterior pituitary gland was studied using cells in primary culture. Growth hormone (GH) release is stimulated by all eight PGs studied, PGE1 and E2 being 1000-fold more potent than the corresponding PGFs. The release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) remains unchanged upon addition of PGEs. While the basal release of thyrotropin (TSH) is only slightly stimulated by concentrations of PGEs above 10−6M, an important potentiation of the stimulatory effect of thyrotropin-releasing hormone on TSH release is observed. The release of GH, TSH and LH is stimulated equally well by PGAs and PGBs at concentrations higher than 10−6M, 3 × 10−6M, and 10−5M, respectively. PGFs do not affect the release of any of the measured pituitary hormones at concentrations below 10−4M. The stimulation of GH release by PGE2 can be inhibited by the PG antagonist 7-oxa-13-prostynoic acid, a half-maximal inhibition being found at a concentration of 4 × 10−5M of the antagonist in the presence of 10−6M PGE2. In the presence of somatostatin (10−8M), the inhibition of GH release cannot be reversed by PGE2 at concentrations up to 10−4M. 8-bromo-cyclic AMP-induced GH release is additive with that produced by PGE2.The present data show that 1) of the five pituitary hormones measured, only GH release is stimulated by prostaglandins at relatively low concentrations, 2) the PGE-induced GH release can be competitively inhibited by 7-oxa-13-prostynoic acid, 3) the inhibition of GH release by somatostatin cannot be reversed by PGE2 and 4) the PGEs increase the responsiveness of the thyrotrophs to TRH.  相似文献   

11.
In the Tyrode's perfused rabbit kidney PGI2 (1.3 × 10−8-3.3 × 10−7M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2,if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

12.
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C1-BODIPY-C12 in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis–Menten kinetics; the apparent efficiency (kcat/KT) of this process increases over 2-fold (2.1 × 106–4.5 × 106 s−1 M−1) upon adipocyte differentiation. The Vmax values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 × 106 s−1 M−1 versus 1.5 × 106 s−1 M−1). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving Vmax values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The same cells had reduced efficiency for fatty acid transport (ranging from 0.82 × 106 s−1 M−1 to 1.35 × 106 s−1 M−1).  相似文献   

13.
A sensitive, selective, and rapid enzymatic method is proposed for the quantification of hydrogen peroxide (H2O2) using 3-methyl-2-benzothiazolinonehydrazone hydrochloride (MBTH) and 10,11-dihydro-5H-benz(b,f)azepine (DBZ) as chromogenic cosubstrates catalyzed by horseradish peroxidase (HRP) enzyme. MBTH traps free radical released during oxidation of H2O2 by HRP and gets oxidized to electrophilic cation, which couples with DBZ to give an intense blue-colored product with maximum absorbance at 620 nm. The linear response for H2O2 is found between 5 × 10−6 and 45 × 10−6 mol L−1 at pH 4.0 and a temperature of 25 °C. Catalytic efficiency and catalytic power of the commercial peroxidase were found to be 0.415 × 106 M−1 min−1 and 9.81 × 10−4 min−1, respectively. The catalytic constant (kcat) and specificity constant (kcat/Km) at saturated concentration of the cosubstrates were 163.2 min−1 and 4.156 × 106 L mol−1 min−1, respectively. This method can be incorporated into biochemical analysis where H2O2 undergoes catalytic oxidation by oxidase. Its applicability in the biological samples was tested for glucose quantification in human serum.  相似文献   

14.
Prostaglandins (PGs) E1 or F (1.4−8.4 × 10−8 M) contracted strips of rabbit aorta and increased the contractions produced by 1−6 × 10−7 M phenylephrine (PE). The addition of the PGs simultaneously with PE or after a low concentration of PE (2 × 10−7 M) significantly increased the PE-induced contractions. However, when the PGs were added after a higher concentration of PE (6 × 10−7 M) an additional increase in the PE-induced contraction was produced with PGF but not with PGE1. Isobolic plots of the data obtained from the simultaneous addition of PE and the PGs indicate that both PGs interact with PE in a synergistic or potentiative manner, suggesting that their effects are mediated through different receptor mechanisms. Addition of the PGs after a high dose of PE indicates that there may also be either qualitative or quantitative differences between PGE1 and PGF.  相似文献   

15.
Infusions of prostacyclin (PGI2) (3 × 10−10 − 3 × 10−7M) into the coronary circulation of isolated hearts from guinea pigs or rabbits resulted in a concentration-dependent decrease in the coronary perfusion pressure (CPP). There was a slight decrease in left ventricular systolic pressure in the heart of the rabbit, whereas the heart rate remained unchanged. PGE2 was without effect on the heart of the rabbit but was as potent as PGI2 in decreasing the CPP in the guinea pig heart. 6-oxo-PGF (up to 3 × 10−6 M) did not affect any of the parameters measured.  相似文献   

16.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

17.
The role of prostaglandins (PGs) in the mechanism of action of acetylcholine (ACh) on frog adrenocortical cells has been examined. Administration of a single dose of ACh (5 × 10−5 M) to perifused frog interrenal fragments, for 20 min, stimulated the production of corticosterone, aldosterone, PGE2 and 6-keto-PGF. In contrast ACh did not significantly alter TXB2 production. The effect of ACh could be mimicked by muscarine (10−5 M). Conversely, nicotine (10−6 to 10−4 M) was totally inactive. The increase in PG biosynthesis preceded the peak of corticosteroid release. Repeated 20-min pulses of ACh (5 × 10−5 M) or muscarine (10−5 M) given at 130-min intervales induced a desensitization phenomenon. In presence of indomethacin (5 × 10−6 M), the effect of ACh on PG and steroid secretion was totally abolished. In calcium-free medium, the effect of ACh on PG and corticosteroid production was completely blocked. These results indicated that, in the frog, ACh stimulates corticosteroid secretion through a PG-dependent mechanism.  相似文献   

18.
Oviduct segments from infundibulum, magnum, uterus, uterovaginal junction and vagina of actively laying hens at preoviposition time were tested for their contractile reaction to prostaglandin E1 by or methods. Maximum stimulatory response was observed from the muscular strips of the proximal oviduct segment (infundibulum) and a complete relaxation was recorded from the distal part (vagina) at molar concentrations of 1.4 × 10−7, 3.4 × 10−7 and 7.0 × 10−7. The uterine strips reacted with a stimulatory response at higher concentrations (1.4 × 10−6 and 2.8 × 10−6 moles), but lacked any significant change at lower concentrations. The uterovaginal muscular strips showed a mild but prolonged inhibitory response, while the magnum responded with a significant increase in the luminal pressure when tested . It is concluded that PGE1 exerts a stimulatory effect on the uterus to initiate transport of the egg to subsequent segments (uterovaginal junction and vagina), which relax under PGE1 influence and allow passage of the egg by pressure differences.  相似文献   

19.
Pretreatment of human lung fibroblasts with PGE2 but not PGF enhanced synthesis of prostaglandins (PGs). The effect of the pretreatment on PG synthesis was related to the concentration of PGE2 that was added to the culture medium. Pretreatment with PGE2 at 5 × 10−12M did not enhance PG synthesis whereas pretreatment with PGE2 at 5 × 10−6M induced a maximal effect. Production of PGs was increased following 1 day of pretreatment with PGE2 and was increased further following 3 days of pretreatment. The PGE2 treated cells showed only a slight increase in the bradykinin-induced release of radioactivity from cells prelabeled with [3H]arachidonic acid but showed a dramatic increase in the bradykinin-induced synthesis of radio-labeled PGs. The conversion of free arachidonate to PGs in both intact cells and in a cell-free preparation was increased by PGE2 pretreatment. The presence of cyclohexamide during the pretreatment did not inhibit the PGE2-induced activation of PG synthesis. Taken together, the results indicate that pretreatment of cells with PGE2 increased PG synthesis by augmenting the conversion of arachidonate to PGs.  相似文献   

20.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF, increased intracellular cAMP concentrations. At maximal concentrations (10−5 tthe effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10−5 PGE2. PGs, when tested at concentrations (e.g. 10−9 ) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmatic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10−5 ), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号