首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
Polyubiquitin receptors execute the targeting of polyubiquitylated proteins to the 26S proteasome. In vitro studies indicate that disturbance of the physiological balance among different receptor proteins impairs the proteasomal degradation of polyubiquitylated proteins. To study the physiological consequences of shifting the in vivo equilibrium between the p54/Rpn10 proteasomal and the Dsk2/dUbqln extraproteasomal polyubiquitin receptors, transgenic Drosophila lines were constructed in which the overexpression or RNA interference-mediated silencing of these receptors can be induced. Flies overexpressing Flag-p54 were viable and fertile, without any detectable morphological abnormalities, although detectable accumulation of polyubiquitylated proteins demonstrated a certain level of proteolytic disturbance. Flag-p54 was assembled into the 26S proteasome and could fully complement the lethal phenotype of a p54 null mutant Drosophila line. The overexpression of Dsk2 caused severe morphological abnormalities in the late pupal stages, leading to pharate adult lethality, accompanied by a huge accumulation of highly polyubiquitylated proteins. The lethal phenotype of Dsk2 overexpression could be rescued in a double transgenic line coexpressing Flag-Dsk2 and Flag-p54. Although the double transgenic line was viable and fertile, it did not restore the proteolytic defects; the accumulation of the highly polyubiquitylated proteins was even more severe in the double transgenic line. Significant differences were found in the Dsk2-26S proteasome interaction in Drosophila melanogaster as compared with Saccharomyces cerevisiae. In yeast, Dsk2 can interact only with ΔRpn10 proteasomes and not with the wild-type one. In Drosophila, Dsk2 does not interact with Δp54 proteasomes, but the interaction can be fully restored by complementing the Δp54 deletion with Flag-p54.  相似文献   

2.
Substrates are targeted for proteolysis by the ubiquitin pathway by the addition of a polyubiquitin chain before being degraded by the 26 S proteasome. Previously, a subunit of the proteasome, S5a, was identified that was able to bind to polyubiquitin in vitro and thus proposed to act as a substrate recognition component. Deletion of the corresponding Saccharomyces cerevisiae gene, MCB1/RPN10, rendered cells viable indicating that other proteasomal polyubiquitin receptors must exist. In this study, we describe pus1(+), the fission yeast homologue of RPN10. This gene is also not required for cell viability; however, the Deltapus1 mutant is synthetically lethal with mutations in other proteasomal component-encoding genes, namely mts3, pad1, and mts4 (RPN12, RPN11, and RPN1). Overexpression of pus1(+) is able to rescue mts3-1 at 32 degrees C but overexpression of a cDNA encoding a version of Pus1 that does not bind to polyubiquitin cannot and leads to greatly reduced viability when used to rescue the mts3-1Deltapus1 double mutant. The Mts3 protein was unable to bind to polyubiquitin in vitro, but the Pus1 and Mts3 proteins were found to bind to one another in vitro, which taken together with the genetic data suggests that they are also closely associated in vivo.  相似文献   

3.
The S13 subunit (also called Pad1, Rpn11, and MPR1) is a component of the 19S complex, a regulatory complex essential for the ubiquitin-dependent proteolytic activity of the 26S proteasome. To address the functional role of S13, we combined double-stranded RNA interference (RNAi) against the Drosophila proteasome subunit DmS13 with expression of wild-type and mutant forms of the homologous human gene, HS13. These studies show that DmS13 is essential for 26S function. Loss of the S13 subunit in metazoan cells leads to increased levels of ubiquitin conjugates, cell cycle defects, DNA overreplication, and apoptosis. In vivo assays using short-lived proteasome substrates confirmed that the 26S ubiquitin-dependent degradation pathway is compromised in S13-depleted cells. In complementation experiments using Drosophila cell lines expressing HS13, wild-type HS13 was found to fully rescue the knockdown phenotype after DmS13 RNAi treatment, while an HS13 containing mutations (H113A-H115A) in the proposed isopeptidase active site was unable to rescue. A mutation within the conserved MPN/JAMM domain (C120A) abolished the ability of HS13 to rescue the Drosophila cells from apoptosis or DNA overreplication. However, the C120A mutant was found to partially restore normal levels of ubiquitin conjugates. The S13 subunit may possess multiple functions, including a deubiquitinylating activity and distinct activities essential for cell cycle progression that require the conserved C120 residue.  相似文献   

4.
Lysine 48-linked polyubiquitin chains usually target proteins for 26 S proteasomal degradation; however, this modification is not a warrant for destruction. Here, we found that efficient degradation of a physiological substrate UbcH10 requires not only an exogenous polyubiquitin chain modification but also its unstructured N-terminal region. Interestingly, the unstructured N-terminal region of UbcH10 directly binds the 19 S regulatory complex of the 26 S proteasome, and it mediates the initiation of substrate translocation. To promote ubiquitin- dependent degradation of the folded domains of UbcH10, its N-terminal region can be displaced by exogenous proteasomal binding elements. Moreover, the unstructured N-terminal region can initiate substrate translocation even when UbcH10 is artificially cyclized without a free terminus. Polyubiquitinated circular UbcH10 is completely degraded by the 26 S proteasome. Accordingly, we propose that degradation of some polyubiquitinated proteins requires two binding interactions: a polyubiquitin chain and an intrinsic proteasomal binding element in the substrates (likely an unstructured region); moreover, the intrinsic proteasomal binding element initiates substrate translocation regardless of its location in the substrates.  相似文献   

5.
Recognition of the polyubiquitin proteolytic signal   总被引:40,自引:3,他引:40       下载免费PDF全文
Polyubiquitin chains linked through Lys48 are the principal signal for targeting substrates to the 26S proteasome. Through studies of structurally defined, polyubiquitylated model substrates, we show that tetraubiquitin is the minimum signal for efficient proteasomal targeting. The mechanism of targeting involves a simple increase in substrate affinity that is brought about by autonomous binding of the polyubiquitin chain. Assigning the proteasomal signaling function to a specific polymeric unit explains how a single ubiquitin can act as a functionally distinct signal, for example in endocytosis. The properties of the substrates studied here implicate substrate unfolding as a kinetically dominant step in the proteolysis of properly folded proteins, and suggest that extraproteasomal chaperones are required for efficient degradation of certain proteasome substrates.  相似文献   

6.
Ubiquitin is a key regulatory molecule in diverse cellular events. How cells determine the outcome of ubiquitylation remains unclear; however, a likely determinant is the specificity of ubiquitin receptor proteins for polyubiquitin chains of certain length and linkage. Proteasome subunit S5a contains two ubiquitin-interacting motifs (UIMs) through which it recruits ubiquitylated substrates to the proteasome for their degradation. Here, we report the structure of S5a (196-306) alone and complexed with two monoubiquitin molecules. This construct contains the two UIMs of S5a and we reveal their different ubiquitin-binding mechanisms and provide a rationale for their unique specificities for different ubiquitin-like domains. Furthermore, we provide direct evidence that S5a (196-306) binds either K63-linked or K48-linked polyubiquitin, and in both cases prefers longer chains. On the basis of these results we present a model for how S5a and other ubiquitin-binding proteins recognize polyubiquitin.  相似文献   

7.
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome''s ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.  相似文献   

8.
Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.  相似文献   

9.
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.  相似文献   

10.
Expression of the CDK inhibitor p21(Cip1) is tightly regulated by signals that control cell division. p21 is an unstable protein that is degraded by the proteasome; however, the pathway that leads to proteasomal degradation of p21 has proven to be enigmatic. An important issue is whether proteasomal degradation of p21 occurs independently of ubiquitylation or, alternatively, whether ubiquitylation on its N terminus is crucial. We resolve this uncertainty by showing that endogenous cellular p21 is completely acetylated at its amino terminus and is therefore not a substrate for N-ubiquitylation. We further show that inactivation of essential components of the ubiquitylation machinery does not directly impact endogenous p21 degradation. Our results underscore the importance of N-acetylation in restricting N-ubiquitylation and show, in particular, that ubiquitylation of endogenous p21 either at internal lysines or on the N terminus is unlikely to control its degradation by the proteasome.  相似文献   

11.
12.
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained.  相似文献   

13.
The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding domains of the S5a proteasome subunit bound to an affinity matrix and then deubiquitinated by the catalytic domain of the USP2 enzyme. This two step purification of proteasome substrates involving both protein-protein interactions and enzyme-mediated release allowed highly specific isolation of polyUb 26 S proteasome substrates, which were then resolved on two-dimensional gels post-deubiquitination. To establish our method, we focused on a gel area where spots were best resolved. Surprisingly, spot analysis by mass spectrometry identified alpha2, alpha6, alpha7, beta2, beta3, beta4, and beta5 20 S proteasome subunits as potential substrates. Western blots using an anti-beta3 proteasome subunit antibody confirmed that high molecular weight forms of beta3 were present, particularly in proteasome inhibitor-treated cells. Sucrose gradients of cell lysates suggested that the proteasome was first disassembled before subunits were polyubiquitinated. Altogether, we provide a technique that enables large scale identification of 26 S proteasome substrates that should contribute to a better understanding of this proteolytic machinery in any living cell and/or organ/tissue. Furthermore, the data suggest that proteasome homeostasis involves an autoregulatory mechanism.  相似文献   

14.
ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit. Biochemical reconstitution with purified Sic1, a prototype substrate of the Cdc34/SCF ubiquitin ligase, suggests that substrate degradation is essential for triggering the ATP hydrolysis-dependent dissociation and disassembly of the 19S and that this mechanism leads to release of degradation products. This is the first demonstration that a controlled dissociation of the 19S regulatory particles from the 26S proteasome is part of the mechanism of protein degradation.  相似文献   

15.
D Mahaffey  M Rechsteiner 《FEBS letters》1999,450(1-2):123-125
The 26S proteasome subunit 5a binds polyubiquitin chains and has previously been shown to inhibit the degradation of mitotic cyclins. Presumably inhibition results from S5a binding and preventing recognition of Ub-cyclin conjugates by the 26S proteasome. Here we show that S5a does not inhibit the degradation of full-length ornithine decarboxylase (ODC) consistent with previous reports that the enzyme is degraded in an antizyme-dependent, but ubiquitin-independent reaction. S5a does, however, inhibit degradation of short ODC translation products generated by internal initiation events. Because in vitro translation often produces some shortened products, the existence of ubiquitin conjugated to a 35S-labeled protein is not necessarily evidence that the full-length protein is a substrate of the Ub-dependent proteolytic pathway.  相似文献   

16.
Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome, possibly by inducing oxidative stress-mediated modifications that compromise substrate delivery to proteolytic core.  相似文献   

17.
Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome.  相似文献   

18.
19.
The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.  相似文献   

20.
The stability of the tumor suppressor protein p53 is regulated via the ubiquitin-proteasome-dependent proteolytic pathway. Like most substrates of this pathway, p53 is modified by the attachment of polyubiquitin chains prior to proteasome-mediated degradation. However, the mechanism(s) involved in the delivery of polyubiquitylated p53 molecules to the proteasome are currently unclear. Here, we show that the human DNA repair protein hHR23 binds to polyubiquitylated p53 via its carboxyl-terminal ubiquitin-associated (Uba) domain shielding p53 from deubiquitylation in vitro and in vivo. In addition, downregulation of hHR23 expression within cells by RNA interference results in accumulation of p53. Since the Ubl domain of hHR23 has been shown to interact with the 26S proteasome, we propose that hHR23 is intrinsically involved in the delivery of polyubiquitylated p53 molecules to the proteasome. In this model, the Uba domain of hHR23 binds to polyubiquitin chains formed on p53 and protects them from deubiquitylation, while the Ubl domain delivers the polyubiquitylated p53 molecules to the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号