首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dobzhansky-Muller model denotes incompatible gene interactions between diverging populations/species and is recognized as the basis of postzygotic reproductive isolation. Little is known about the molecular nature of such gene interactions. We have carried out comparative gene expression analyses in the testes of 3 closely related species of the Drosophila melanogaster subgroup and their hybrids (all of which are sterile). We show that in hybrids 1) a higher proportion of male-biased genes (i.e., genes with a higher level of expression in males) are underexpressed (or not expressed) compared with non-sex-biased genes, 2) the majority of the underexpressed genes appear to be under stabilizing selection by virtue of showing similar levels of expression in the parental species, and only a small proportion of genes show signs of directional selection, 3) very few of the misexpressed genes are shared between species pairs, suggesting that there may not be a "common" set of "speciation genes," and 4) expression of non-testes-specific genes is observed in the testes of interspecific hybrids, and the number of such genes is positively correlated with divergence time. These results suggest that gene regulation divergence of sex- and reproduction-related genes is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila.  相似文献   

2.
A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice.  相似文献   

3.
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4–6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10?6 per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.  相似文献   

4.
Climate is one of the most important drivers for adaptive evolution in forest trees. Climatic selection contributes greatly to local adaptation and intraspecific differentiation, but this kind of selection could also have promoted interspecific divergence through ecological speciation. To test this hypothesis, we examined intra‐ and interspecific genetic variation at 25 climate‐related candidate genes and 12 reference loci in two closely related pine species, Pinus massoniana Lamb. and Pinus hwangshanensis Hisa, using population genetic and landscape genetic approaches. These two species occur in Southeast China but have contrasting ecological preferences in terms of several environmental variables, notably altitude, although hybrids form where their distributions overlap. One or more robust tests detected signals of recent and/or ancient selection at two‐thirds (17) of the 25 candidate genes, at varying evolutionary timescales, but only three of the 12 reference loci. The signals of recent selection were species specific, but signals of ancient selection were mostly shared by the two species likely because of the shared evolutionary history. FST outlier analysis identified six SNPs in five climate‐related candidate genes under divergent selection between the two species. In addition, a total of 24 candidate SNPs representing nine candidate genes showed significant correlation with altitudinal divergence in the two species based on the covariance matrix of population history derived from reference SNPs. Genetic differentiation between these two species was higher at the candidate genes than at the reference loci. Moreover, analysis using the isolation‐with‐migration model indicated that gene flow between the species has been more restricted for climate‐related candidate genes than the reference loci, in both directions. Taken together, our results suggest that species‐specific and divergent climatic selection at the candidate genes might have counteracted interspecific gene flow and played a key role in the ecological divergence of these two closely related pine species.  相似文献   

5.
We measured genetic differentiation among species of large white-headed gulls using mitochondrial (cytochrome b haplotypes) and nuclear (microsatellites) markers. Additional information was added using a previously published study of allozymes on the same species. Levels of differentiation among species at nuclear markers are much lower than would be expected for avian species and are not concordant with the level of differentiation in mitochondrial markers. This discrepancy is best explained by a combination of recent species origin and interspecific gene flow after speciation. The data also suggest that female-mediated gene flow is reduced compared to male-mediated gene flow, either due to behavioral bias or due to stronger counterselection of female hybrids in accordance with Haldane's rule for ZW species. Whatever the reasons for the low differentiation of the species' nuclear gene pools, the extensive similarity of their nuclear genome demonstrates that selection on a limited number of characters is an important factor in establishing and maintaining clear-cut phenotypic differences between these species and suggests that the number of loci involved in this process is quite low. This situation may not be exceptional in birds, indeed a number of studies have found similarly low level of differentiation in nuclear markers among congeneric bird species, although usually based on a single set of markers. Because hybridization is a widespread phenomenon in birds, many of these cases might be due to interspecific gene flow.  相似文献   

6.
Ecological speciation occurs when inherent reproductive barriers to gene flow evolve between populations as a result of divergent natural selection. Frequency dependent effects associated with intraspecific resource competition are thought to be one important source of divergent selection facilitating ecological speciation. Interspecific competition may also play an important role in promoting population divergence. Although evidence for interspecific competition in nature is ubiquitous, there is currently little empirical data supporting its role in the speciation process. Here, we discuss two general models in which interspecific competition among species can promote ecological speciation among populations within a species. In both models, interspecific competition is the source of divergent selection driving adaption to different portions of the resource distribution, generating ecological reproductive isolation from other conspecific populations. We propose that the biology of endoparasitoids that attack phytophagous insects make model systems for studying the role of interspecific competition in ecological speciation. We describe details for one such system, the community of endoparasitic braconid wasps attacking Rhagoletis fruit flies, as a potential model for investigating competitive speciation. We conclude by hypothesizing that a model in which interspecific competition forces an inferior competitor to alternative fly hosts may be a common theme contributing to parasitoid diversification in the Rhagoletis-parasitoid system.  相似文献   

7.
Speciation in the ocean could differ from terrestrial environments due to fewer barriers to gene flow. Hence, sympatric speciation might be common, with American and European eel being candidates for exemplifying this. They show disjunct continental distributions on both sides of the Atlantic, but spawn in overlapping regions of the Sargasso Sea from where juveniles are advected to North American, European and North African coasts. Hybridization and introgression are known to occur, with hybrids almost exclusively observed in Iceland. Different speciation scenarios have been suggested, involving either vicariance or sympatric ecological speciation. Using RAD sequencing and whole‐genome sequencing data from parental species and F1 hybrids, we analysed speciation history based on the joint allele frequency spectrum (JAFS) and pairwise sequentially Markovian coalescent (PSMC) plots. JAFS supported a model involving a split without gene flow 150,000–160,000 generations ago, followed by secondary contact 87,000–92,000 generations ago, with 64% of the genome experiencing restricted gene flow. This supports vicariance rather than sympatric speciation, likely associated with Pleistocene glaciation cycles and ocean current changes. Whole‐genome PSMC analysis of F1 hybrids from Iceland suggested divergence 200,000 generations ago and indicated subsequent gene flow rather than strict isolation. Finally, simulations showed that results from both approaches (JAFS and PSMC) were congruent. Hence, there is strong evidence against sympatric speciation in North Atlantic eels. These results reiterate the need for careful consideration of cases of possible sympatric speciation, as even in seemingly barrier‐free oceanic environments palaeoceanographic factors may have promoted vicariance and allopatric speciation.  相似文献   

8.
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry.  相似文献   

9.
Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA‐seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ?a?i serve to test the null hypothesis of no gene flow during divergence. The best‐fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ?a?i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).  相似文献   

10.
Investigating patterns of genetic variation in hybridizing species provides an opportunity to understand the impact of natural selection on intraspecific genetic variability and interspecific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon which natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation within species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragment length polymorphism data collected previously using population genomics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral mechanisms at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-temporal distribution of Icelandic hybrids. We first found candidate loci for directional selection within both species. Spatial distributions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits in A. rostrata , and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla . Second, we identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for some of these loci. We detected a locus at which typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival of admixed genotypes partly explains the spatio-temporal pattern of hybrid abundance previously documented in Iceland.  相似文献   

11.
The roles of intra- and interspecific gene flow in speciation and species evolution are topics of great current interest in molecular ecology and evolutionary biology. Recent modelling studies call for new empirical data to test hypotheses arising from the recent shift from a 'whole-genome reproductive isolation' view to a 'genic' view of species and speciation. Particularly scarce (and thus of particular interest) are molecular genetic data on recently radiated, naturally hybridizing species in strongly structured and species-rich environments. Here, we studied four sympatric plant species (Pitcairnia spp.; Bromeliaceae) adapted to Neotropical inselbergs (isolated outcrops resembling habitat 'islands' in tropical rainforests) using nuclear and plastid DNA. Patterns of plastid DNA haplotype sharing and nuclear genomic admixture suggest the presence of both, incomplete lineage sorting and interspecific gene flow over extended periods of time. Integrity and cohesion of inselberg species of Pitcairnia are maintained despite introgression and in the face of extremely low within-species migration rates (N(e)m < 1 migrant per generation). Cross-evaluation of our genetic data against published pollination experiments indicate that species integrity is maintained by the simultaneous action of multiple prezygotic barriers, including flowering phenology, pollinator isolation and divergent mating systems. Postzygotic Bateson-Dobzhansky-Muller incompatibilities appear to contribute to isolation, as suggested by asymmetric introgression rates of single loci. Our results suggest that incomplete lineage sorting, hybridization and introgression form integral aspects of adaptive radiation in Neotropical inselberg 'archipelagos'. Inselbergs with multiple closely related co-occurring species should be of special interest to students of speciation in mountain systems, and to ongoing conservation programmes in the Atlantic Rainforest biodiversity hotspot.  相似文献   

12.
Reinforcement and divergence under assortative mating   总被引:5,自引:0,他引:5  
Traits that cause assortative mating such as the flowering time in plants and body size in animals can produce reproductive isolation between hybridizing populations. Can selection against unfit hybrids cause two populations to diverge in their mean values for these kinds of traits? Here I present a haploid analytical model of one population that receives gene flow from another. The partial pre-zygotic isolation between the two populations is caused by assortative mating for a trait that is influenced by any number of genes with additive effects. The post-zygotic isolation is caused by selection against genetic incompatibilities that can involve any form of selection on individual genes and gene combinations (epistasis). The analysis assumes that the introgression rate and selection coefficients are small. The results show that the assortment trait mean will not diverge from the immigrants unless there is direct selection on the trait favouring it to do so or there are genes of very large effect. The amount of divergence at equilibrium is determined by a balance between direct selection on the assortment trait and introgression from the other population. Additional selection against hybrid genetic incompatibilities reduces the effective migration rate and allows greater divergence. The role of assortment in speciation is discussed in the light of these results.  相似文献   

13.
Asymmetrical crossing barriers in angiosperms   总被引:1,自引:0,他引:1  
Patterns of reproductive isolation between species may provide insight into the mechanisms and evolution of barriers to interspecific gene exchange. We used data from published interspecific hybridization experiments from 14 genera of angiosperms in order to test for the presence of asymmetrical barriers to gene exchange. Reproductive isolation was examined at three life-history stages: the ability of interspecific crosses to produce seeds, the viability of F1 hybrids, and the fertility of F1 hybrids. Statistically significant asymmetries in the strength of reproductive isolation between species were detected in all genera and at each of the three life-history stages. Asymmetries in seed production may be caused by a variety of mechanisms including differences in stigma/style lengths, self compatibility and differential fruit abortion. Asymmetries in post-zygotic isolation are probably caused by nuclear-cytoplasmic interactions. Asymmetrical reproductive isolation between plant taxa may have important implications for the dynamics of hybrid zones, the direction of genetic introgression and the probability of reinforcement.  相似文献   

14.
If sexual selection is to result in speciation, traits involved in mate choice within species need to be capable of producing sexual isolation between species. We investigated the association between mate choice and sexual isolation using interspecific hybrids between two sibling species, Drosophila serrata and Drosophila birchii. A perfuming experiment demonstrated that olfaction was involved in the sexual isolation between the two species. A quantitative genetic analysis using 30 populations of hybrids between the two species indicated that mating success in hybrid individuals was predominately determined by cuticular hydrocarbons; the average genetic correlation between mating success and cuticular hydrocarbon profile was 0.84, and in some instances exceeded 0.95. Multivariate analysis of the cuticular hydrocarbons of the two species revealed that there were three independent blends of cuticular hydrocarbons that separated three levels of organization: species, sex, and sex within species. The hydrocarbons used by hybrids in mate choice included those that separated the two species, demonstrating that species-specific characters may be used in mate choice within populations. The interspecific reciprocal cross had major effect on which cuticular hydrocarbons were associated with mating success, indicating that the expression of the cuticular hydrocarbons was strongly sex linked.  相似文献   

15.
Orographic and climatic influences during the Pleistocene have had a crucial role on interspecific divergence and population demography during speciation. However, associations between demographic histories of closely related species and related climatic events, especially in north and northeast China, are still underexplored. Genetic analyses with four chloroplast DNA and two nuclear genes and species distribution modeling were used for two closely related oak species (Quercus liaotungensis and Quercus mongolica) to test if their interspecific divergence and phylogeographical histories were possibly related to the Pleistocene-era climatic events. Potential divergence of the two oak species was estimated at about 0.92–2.15 Ma. Species distribution models and genetic data showed varying phylogeographical histories and spatial population structures between the two oaks, leading to different patterns of interspecific gene flow between the chloroplast and nuclear genes. The results indicate that speciation event between the two species is recent and may have been triggered by geological and climatic fluctuations linked to the upheavals of the Qinghai-Tibetan Plateau at the Pliocene/Pleistocene boundary. The two closely related oaks possess varying population demography during the interglacial-glacial climatic oscillations of the Quaternary, probably due to the various niche adaptations among different distribution ranges across their species trajectories.  相似文献   

16.
Zhang Z  Inomata N  Ohba T  Cariou ML  Yamazaki T 《Genetics》2002,161(3):1187-1196
We examined the pattern of synonymous substitutions in the duplicated Amylase (Amy) genes (called the Amy1- and Amy3-type genes, respectively) in the Drosophila montium species subgroup. The GC content at the third synonymous codon sites of the Amy1-type genes was higher than that of the Amy3-type genes, while the GC content in the 5'-flanking region was the same in both genes. This suggests that the difference in the GC content at third synonymous sites between the duplicated genes is not due to the temporal or regional changes in mutation bias. We inferred the direction of synonymous substitutions along branches of a phylogeny. In most lineages, there were more synonymous substitutions from G/C (G or C) to A/T (A or T) than from A/T to G/C. However, in one lineage leading to the Amy1-type genes, which is immediately after gene duplication but before speciation of the montium species, synonymous substitutions from A/T to G/C were predominant. According to a simple model of synonymous DNA evolution in which major codons are selectively advantageous within each codon family, we estimated the selection intensity for specific lineages in a phylogeny on the basis of inferred patterns of synonymous substitutions. Our result suggested that the difference in GC content at synonymous sites between the two Amy-type genes was due to the change of selection intensity immediately after gene duplication but before speciation of the montium species.  相似文献   

17.
Speciation despite gene flow when developmental pathways evolve   总被引:7,自引:0,他引:7  
Abstract.— Evolutionary biologists assume that species formation requires a drastic reduction in gene exchange between populations, but the rate sufficient to prevent speciation is unknown. To study speciation, we use a new class of population genetic models that incorporate simple developmental genetic rules, likely present in all organisms, to construct the phenotype. When we allow replicate populations to evolve in parallel to a new, shared optimal phenotype, often their hybrids acquire poorly regulated phenotypes: Dobzhansky-Muller incompatibilities arise and postzygotic reproductive isolation evolves. Here we show that, although gene exchange does inhibit this process, it is the proportion of migrants exchanged ( m ) rather than the number of migrants ( Nm ) that is critical, and rates as high as 16 individuals exchanged per generation still permit the evolution of postzygotic isolation. Stronger directional selection counters the inhibitory effect of gene flow, increasing the speciation probability. We see similar results when populations in a standard two-locus, two-allele Dobzhansky-Muller model are subject to simultaneous directional selection and gene flow. However, in developmental pathway models with more than two loci, gene flow is more able to impede speciation. Genetic incompatibilities arise as frequent by-products of adaptive evolution of traits determined by regulatory pathways, something that does not occur when phenotypes are modeled using the standard, additive genetic framework. Development therefore not only constrains the microevolutionary process, it also facilitates the interactions among genes and gene products that make speciation more likely–even in the face of strong gene flow.  相似文献   

18.
The geographic ranges of rhesus ( Macaca mulatta ) and cynomolgus ( M. fascicularis ) macaques adjoin in Indochina where they appear to hybridize. We used published and newly generated DNA sequences from 19 loci spanning ~20 kb to test whether introgression has occurred between these macaque species. We studied introgression at the level of nuclear DNA and distinguished between incomplete lineage sorting of ancestral polymorphisms or interspecific gene flow. We implemented a divergence population genetics approach by fitting our data to an isolation model implemented in the software IMa. The model that posits no gene flow from the rhesus into the cynomolgus macaque was rejected ( P  = 1.99 × 10−8). Gene flow in this direction was estimated as 2 Nm ~1.2, while gene flow in the reverse direction was nonsignificantly different from zero ( P  = 0.16). The divergence time between species was estimated as ~1.3 million years. Balancing selection, a special case of incomplete sorting, was taken into consideration, as well as potential crossbreeding in captivity. Parameter estimates varied between analyses of subsets of data, although we still rejected isolation models. Geographic sampling of the data, where samples of cynomolgus macaques derived from Indochina were excluded, revealed a lost signature of gene flow, indicating that interspecific gene flow is restricted to mainland Indochina. Our results, in conjunction with those by others, justify future detailed analyses into the genetics of reproductive barriers and reticulate evolution in these two genome-enabled primates. Future studies of the natural hybridization between rhesus and cynomolgus macaques would expand the repertoire of systems available for speciation studies in primates.  相似文献   

19.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

20.
Drosophila ananassae and Drosophila pallidosa are closely related species that can produce viable and fertile hybrids of both sexes, although strong sexual isolation exists between the two species. Females are thought to discriminate conspecific from heterospecific males based on their courtship songs. The genetic basis of female discrimination behavior was analyzed using isogenic females from interspecific mosaic genome lines that carry homozygous recombinant chromosomes. Multiple regression analysis indicated a highly significant effect of the left arm of chromosome 2 (2L) on the willingness of females to mate with D. ananassae males. Not only 2L but also the left arm of chromosome X (XL) and the right arm of chromosome 3 (3R) had significant effects on the females' willingness to mate with D. pallidosa males. All regions with strong effects on mate choice have chromosome arrangements characterized by species-specific inversions. Heterospecific combinations of 2L and 3R have previously been suggested to cause postzygotic reproductive isolation. Thus, genes involved in premating as well as postmating isolation are located in or near chromosomal inversions. This conclusion is consistent with the recently proposed hypothesis that "speciation genes" accumulate at a higher rate in non-recombining genome regions when species divergence occurs in the presence of gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号