首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Full-length unspliced genomic RNA plays critical roles in HIV replication, serving both as mRNA for the synthesis of the key viral polyproteins Gag and Gag-Pol and as genomic RNA for encapsidation into assembling viral particles. We show that a second gag mRNA species that differs from the genomic RNA molecule by the absence of an intron in the 5′ untranslated region (5′UTR) is produced during HIV-2 replication in cell culture and in infected patients. We developed a cotransfection system in which epitopically tagged Gag proteins can be traced back to their mRNA origins in the translation pool. We show that a disproportionate amount of Gag is translated from 5′UTR intron-spliced mRNAs, demonstrating a role for the 5′UTR intron in the regulation of gag translation. To further characterize the effects of the HIV-2 5′UTR on translation, we fused wild-type, spliced, or mutant leader RNA constructs to a luciferase reporter gene and assayed their translation in reticulocyte lysates. These assays confirmed that leaders lacking the 5′UTR intron increased translational efficiency compared to that of the unspliced leader. In addition, we found that removal or mutagenesis of the C-box, a pyrimidine-rich sequence located in the 5′UTR intron and previously shown to affect RNA dimerization, also strongly influenced translational efficiency. These results suggest that the splicing of both the 5′UTR intron and the C-box element have key roles in regulation of HIV-2 gag translation in vitro and in vivo.  相似文献   

3.
At the 5' and 3' end of genomic HCV RNA there are two highly conserved, untranslated regions, 5'UTR and 3'UTR. These regions are organized into spatially ordered structures and they play key functions in regulation of processes of the viral life cycle. Most nucleotides of the region located at the 5' side of the coding sequence serve as an internal ribosomal entry site, IRES, which directs cap-independent translation. The RNA fragment present at the 3' end of the genome is required for virus replication and probably contributes to translation of viral proteins. During virus replication its genomic strand is transcribed into a strand of minus polarity, the replicative strand. Its 3' terminus is responsible for initiation of synthesis of descendant genomic strands. This article summarizes our current knowledge on the structure and function of the non-coding regions of hepatitis C genomic RNA, 5'UTR and 3'UTR, and the complementary sequences of the replicative viral strand.  相似文献   

4.
5.
The 5'-untranslated region (5'-UTR) is the most conserved part of the HIV-1 RNA genome, and it contains regulatory motifs that mediate various steps in the viral life cycle. Previous work showed that the 5'-terminal 290 nucleotides of HIV-1 RNA adopt two mutually exclusive secondary structures, long distance interaction (LDI) and branched multiple hairpin (BMH). BMH has multiple hairpins, including the dimer initiation signal (DIS) hairpin that mediates RNA dimerization. LDI contains a long distance base-pairing interaction that occludes the DIS region. Consequently, the two conformations differ in their ability to form RNA dimers. In this study, we have presented evidence that the full-length 5'-UTR also adopts the LDI and BMH conformations. The downstream 290-352 region, including the Gag start codon, folds differently in the context of the LDI and BMH structures. These nucleotides form an extended hairpin structure in the LDI conformation, but the same sequences create a novel long distance interaction with upstream U5 sequences in the BMH conformation. The presence of this U5-AUG duplex was confirmed by computer-assisted RNA structure prediction, biochemical analyses, and a phylogenetic survey of different virus isolates. The U5-AUG duplex may influence translation of the Gag protein because it occludes the start codon of the Gag open reading frame.  相似文献   

6.
An essential step in the replication cycle of all retroviruses is the dimerization of genomic RNA prior to or during budding and maturation of the viral particle. In HIV-1, a 5' leader region site termed stem-loop 1 (SL1) promotes RNA dimerization in vitro and influences dimerization in vivo. In HIV-2, two sequences promote dimerization of RNA fragments in vitro: the 5'-end of the primer-binding site (PBS) and a stem-loop region homologous to the HIV-1 SL1 sequence. Because HIV-2 RNA constructs of different lengths use these two dimerization signals disproportionately, we hypothesized that other sequences could modulate their relative utilization. Here, we characterized the influence of sequences upstream and downstream of the major splice donor site on the formation of HIV-2 RNA dimers in vitro using a variety of RNA constructs and dimerization and electrophoresis protocols. We first assayed the formation of loose or tight dimers for 1-444 and 1-561 model RNAs. Although both RNAs could form PBS-dependent loose dimers, the 1-561 RNA was unable to make SL1-dependent tight dimers. Using RNAs truncated at their 5'- and/or 3'-ends and by making compensatory base substitutions, we found that two elements interfere with the formation of SL1-dependent tight dimers. The cores of these elements are located at nucleotides 189-196 and 543-550. Our results suggest that base pairing between these sequences prevents the formation of SL1-dependent tight dimers, probably by sequestering SL1 in a stable intramolecular arrangement. Moreover, we found that nucleotides downstream of SL1 decreased the rate of tight dimerization. Interestingly, dimerization at 37 degrees C in the presence of nucleocapsid protein increased the yield of SL1-mediated tight dimerization in vitro, even in the presence of the two interfering elements, suggesting a relationship between the nucleocapsid protein and activation of the SL1 dimerization signal in vivo.  相似文献   

7.
8.
9.
The genomic RNA of retroviruses exists within the virion as a noncovalently linked dimer. Previously, we identified a mutant of the viral matrix (MA) protein of Rous sarcoma virus that disrupts viral RNA dimerization. This mutant, Myr1E, is modified at the N terminus of MA by the addition of 10 amino acids from the Src protein, resulting in the production of particles containing monomeric RNA. Dimerization is reestablished by a single amino acid substitution that abolishes myristylation (Myr1E-). To distinguish between cis and trans effects involving Myr1E, additional mutations were generated. In Myr1E.cc and Myr1E-.cc, different nucleotides were utilized to encode the same protein as Myr1E and Myr1E-, respectively. The alterations in RNA sequence did not change the properties of the viral mutants. Myr1E.ATG- was constructed so that translation began at the gag AUG, resulting in synthesis of the wild-type Gag protein but maintenance of the src RNA sequence. This mutant had normal infectivity and dimeric RNA, indicating that the src sequence did not prevent dimer formation. All of the src-containing RNA sequences formed dimers in vitro. Examination of MA-green fluorescent protein fusion proteins revealed that the wild-type and mutant MA proteins Myr1E.ATG-, Myr1E-, and Myr1E-.cc had distinctly different patterns of subcellular localization compared with Myr1E and Myr1E.cc MA proteins. This finding suggests that proper localization of the MA protein may be required for RNA dimer formation and infectivity. Taken together, these results provide compelling evidence that the genomic RNA dimerization defect is due to a trans-acting effect of the mutant MA proteins.  相似文献   

10.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

11.
Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.  相似文献   

12.
The formation of genomic RNA dimers during the retroviral life cycle is essential for optimal viral replication and infectivity. The sequences and RNA structures responsible for this interaction are located in the untranslated 5' leader RNA, along with other cis-acting signals. Dimer formation occurs by specific interaction between identical structural motifs. It is believed that an initial kissing hairpin forms following self-recognition by autocomplementary RNA loops, leading to formation of an extended stable duplex. The dimerization initiation site (DIS) of the deltaretrovirus human T-cell lymphotropic virus type-I (HTLV-I) has been previously localized to a 14-nucleotide sequence predicted to contain an RNA stem loop. Biochemical probing of the monomeric RNA structure using RNAse T1, RNAse V1, RNAse U2, lead acetate, and dimethyl sulfate has led to the generation of the first structural map of the HTLV-I DIS. A comprehensive data set of individual nucleotide modifications reveals that the structural motif responsible for HTLV-I RNA dimerization forms a trinucleotide RNA loop, unlike any previously characterized retroviral dimerization motif. Molecular modeling demonstrates that this can be formed by an unusual C:synG base pair closing the loop. Comparative phylogeny indicates that such a motif may also exist in other deltaretroviruses.  相似文献   

13.
Clinical usage of lentiviral vectors is now established and increasing but remains constrained by vector titer with RNA packaging being a limiting factor. Lentiviral vector RNA is packaged through specific recognition of the packaging signal on the RNA by the viral structural protein Gag. We investigated structurally informed modifications of the 5′ leader and gag RNA sequences in which the extended packaging signal lies, to attempt to enhance the packaging process by facilitating vector RNA dimerization, a process closely linked to packaging. We used in-gel SHAPE to study the structures of these mutants in an attempt to derive structure-function correlations that could inform optimized vector RNA design. In-gel SHAPE of both dimeric and monomeric species of RNA revealed a previously unreported direct interaction between the U5 region of the HIV-1 leader and the downstream gag sequences. Our data suggest a structural equilibrium exists in the dimeric viral RNA between a metastable structure that includes a U5–gag interaction and a more stable structure with a U5–AUG duplex. Our data provide clarification for the previously unexplained requirement for the 5′ region of gag in enhancing genomic RNA packaging and provide a basis for design of optimized HIV-1 based vectors.  相似文献   

14.
The 5' UTR of HIV-2 genomic RNA contains signaling motifs that regulate specific steps of the replication cycle. Two motifs of interest are the C-box and the G-box. The C-box is found in the 5' untranslated region upstream of the primer binding site, while the G-box is found downstream from the major splice donor site, encompassing the gag start codon and flanking nucleotides. Together the C-box and the G-box form a long-range base-pairing interaction called the CGI. We and others have previously shown that formation of the CGI affects RNA dimerization in vitro and the positions of the C-box and the G-box are suggestive of potential roles of the CGI in other steps of HIV-2 replication. Therefore, we attempted to elucidate the role of the CGI using a viral SELEX approach. We constructed proviral DNA libraries containing randomized regions of the C-box or G-box paired with wild-type or mutant base-pairing partners. These proviral DNA libraries were transfected into COS-7 cells to produce viral libraries that were then used to infect permissive C8166 cells. The "winner" viruses were sequenced and further characterized. Our results demonstrate that there is strong selective pressure favoring viruses that can form a branched CGI. In addition, we show that the mutation of the C-box alone can enhance RNA encapsidation, and mutation of the G-box can alter the levels of Gag protein isoforms. These results suggest coordinated regulation of RNA translation, dimerization, and encapsidation during HIV-2 replication.  相似文献   

15.
The dimerization of genomic retroviral RNA is well studied for several groups of viruses, the dimerization of human immunodeficiency (HIV) RNA being investigated in more detail. Regions of dimerization apparently involve the short sequences RNA which are directly responsible for the formation of two type dimers: kissing loop-loop (KD) and linear (LD). The 5'-end sequences from RNA avian viruses, where the dimers are basically formed, considerably differ from those of HIV. However, as it was described earlier, the mechanism of dimerization of RNA from human immunodeficiency and from avian leukosis viruses are identical. The fluorescence of adenine analogue 2-aminopurine (2-AP) incorporated into loop sequence of short fragments RNA ALV was used for analysis of dimers formation. Using the temperature dependence of fluorescence intensity 2-AP we have determined RNA melting temperature under various conditions for KD RNA ALV formed by two strands. Effects of magnesium and aminoglycoside antibiotic paromomycin on stabilization of kissing loop-loop dimer RNA have been studied. Under the experimental conditions KD RNA ALV was found to have the stability at the magnesium concentration higher than 1 mM and at paromomycin concentration higher than 2.5 mkM.  相似文献   

16.
17.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

18.
C Berlioz  C Torrent    J L Darlix 《Journal of virology》1995,69(10):6400-6407
The genetic organization of the 5' genomic RNA domain of the highly oncogenic Harvey murine sarcoma virus appears to be unusual in that a multifunctional untranslated leader precedes the v-ras oncogene. This 5' leader is 1,076 nucleotides in length and is formed of independent regions involved in key steps of the viral life cycle: (i) the Moloney murine leukemia virus 5' repeat, untranslated 5' region, and primer binding site sequences necessary for the first steps of proviral DNA synthesis, (ii) the virus-like 30S (VL30)-derived sequence containing a functional dimerization-packaging signal (E/DLS) directing viral RNA dimerization and packaging into MLV virions, and (iii) an Alu-like sequence preceding the 5' untranslated sequence of v-rasH which contains the initiation codon of the p21ras oncoprotein. These functional features, the unusual length of this leader (1,076 nucleotides), and the presence of stable secondary structures between the cap and the v-ras initiation codon might well cause a premature stop of the scanning ribosomes and thus inhibit v-ras translation. In order to understand how Harvey murine sarcoma virus achieves a high level of expression of the ras oncogene, we asked whether the rat VL30 sequence, 5' to v-ras, could contribute to an efficient synthesis of the ras oncoprotein. The implications of the VL30 sequence in the translation initiation of Ha-ras were investigated in the rabbit reticulocyte lysate system and in murine cells. Results show that the rat VL30 sequence allows a cap-independent translation of a downstream reporter gene both in vitro and in murine cells. Additional experiments performed with dicistronic neo.VL30.lacZ mRNAs indicate that the 5' VL30 sequence (positions 380 to 794) contains an internal ribosomal entry signal. This finding led us to construct a new dicistronic retroviral vector with which the rat VL30 sequence was able to direct the efficient expression of a 3' cistron and packaging of recombinant dicistronic RNA into murine leukemia virus virions.  相似文献   

19.
MicroRNAs (miRs) commonly regulate translation from target mRNA 3' untranslated regions (UTRs). While effective miR-binding sites have also been identified in 5' untranslated regions (UTRs) or open reading frames (ORFs), the mechanism(s) of miR-mediated regulation from these sites has not been defined. Here, we systematically investigate how the position of miR-binding sites influences translational regulation and characterize their mechanistic basis. We show that specific translational regulation is elicited in vitro and in vivo not only from the 3'UTR, but equally effectively from six Drosophila miR-2-binding sites in the 5'UTR or the ORF. In all cases, miR-2 triggers mRNA deadenylation and inhibits translation initiation in a cap-dependent fashion. In contrast, single or dual miR-2-binding sites in the 5'UTR or the ORF yield rather inefficient or no regulation. This work represents the first demonstration that 5'UTR and ORF miR-binding sites can function mechanistically similarly to the intensively investigated 3'UTR sites. Using single or dual binding sites, it also reveals a biological rationale for the high prevalence of miR regulatory sites in the 3'UTR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号