首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor vaccines represent a promising therapeutic approach, but thus far have achieved only limited success in the clinic. The major challenge is to find a means of overcoming inhibitory immune regulatory mechanisms and eliciting effective T-cell responses to antigens preferentially expressed by tumor cells. Here we show that the stimulatory capacity of dendritic cells (DCs) and the magnitude of adaptive immunity are critically regulated by the suppressor of cytokine signaling (SOCS) 1 in DCs. Silencing SOCS1 in antigen-presenting DCs strongly enhances antigen-specific anti-tumor immunity. Our findings indicate that SOCS1 represents an inhibitory mechanism for qualitatively and quantitatively controlling antigen presentation by DCs and the magnitude of adaptive immunity. This study has implications for understanding the regulation of antigen presentation and for developing more effective tumor vaccines by silencing the critical brake in antigen presentation.  相似文献   

2.
目的:化疗是晚期胰腺癌的主要治疗手段,但临床效果有限。为提高胰腺癌化疗效果,本研究将化疗药物奥沙利铂(OXA)联合肿瘤全细胞抗原负载的树突状细胞(DC)体外作用于胰腺癌BxPC-3细胞系,观察对其增殖的影响。方法:自健康人外周血中分离培养DC和T细胞。反复冻融BxPC.3细胞,使其裂解并提取全细胞抗原后致敏DC,再以DC激活T细胞。ELISA检测T细胞培养上清中IL-2、IL-4、IL-10和IFN-g的含量。将T细胞与不同浓度的OXA联合作用于BxPC-3细胞,MTT法检测杀伤率。结果:负载BxPC.3全细胞抗原的DC能显著激活T细胞使其成为效应性T细胞,并使其分泌IL-2和IFN—Y。不同浓度的OXA与效应性T细胞联合作用于BxPC.3细胞可明显抑制其增殖,且杀伤效果与OXA的浓度呈正相关。结论:负载BxPC-3全细胞抗原的DC可诱导出抗肿瘤的效应性T细胞,联合OXA能显著提高对BxPC-3细胞的杀伤作用。生物治疗联合化疗抑制胰腺癌细胞增殖的作用明显,具有较好的临床应用前景。  相似文献   

3.
CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.  相似文献   

4.

Background

Lnc-DC is a specific group of long non-coding (Lnc) RNAs in dendritic cells (DCs). Its function has been previously studied, and includes roles in dendritic cell differentiation and the progression of some diseases. In this study, we observed the critical role of Lnc-DC in regulating the differentiation, growth, and apoptosis of dendritic cells.

Methods

We first isolated peripheral blood mononuclear cells to culture and induce into DCs, which were then co-cultured with hepatitis B virus (HBV)-secreting HepG2.2.15 cells for the detection of changes in Lnc-DC. The expression levels of TLR9, p-STAT3, and SOCS3 were tested with qPCR and western blot. MTT assays were used to analyze the cell proliferation, cell cycle, and apoptosis. We used ELISA to test the expression of TNF-α, IL-1β, IL-6, IL-12p40, and IFN-γ.

Results

Co-culture with HBV-secreting HepG2.2.15 cells increased the level of Lnc-DC and activated TLR9/STAT3 signaling. The HBV DNA level (IU/ml) was positively correlated with levels of Lnc-DC and TLR9, further demonstrating that Lnc-DC was associated with the immune response of HBV. Lnc-DC was shown to regulate TLR9/STAT3 signaling in dendritic cells. More interestingly, the regulation of Lnc-DC controlled the immune response by reducing the concentration of secreted TNF-α, IL-6, IL-12, and IFN-γ, as well as increasing the IL-1β concentration in dendritic cells.

Conclusion

Lnc-DC is important in regulating the growth, apoptosis, and immune response of dendritic cells mediated by TLR9/STAT3 signaling, and was also activated by HBV. This study provides a previously unidentified mechanism underlying the immune response in dendritic cells.
  相似文献   

5.
Suppressor of cytokine signaling (SOCS1/JAB) has been shown to play an important role in regulating dendritic cell (DC) function and suppressing inflammatory diseases and systemic autoimmunity. However, role of SOCS1 in DCs for the initiation of Th cell response has not been clarified. Here we demonstrate that SOCS1-deficient DCs induce stronger Th1-type responses both in vitro and in vivo. SOCS1-deficient DCs induced higher IFN-gamma production from naive T cells than wild-type (WT) DCs in vitro. Lymph node T cells also produced a higher amount of IFN-gamma when SOCS1-deficient bone marrow-derived DCs (BMDCs) were transferred in vivo. Moreover, SOCS1(-/-) BMDCs raised more effective anti-tumor immunity than WT BMDCs. Microarray analysis revealed that IFN-inducible genes were highly expressed in SOCS1-deficient DCs without IFN stimulation, suggesting hyper STAT1 activation in SOCS1(-/-) DCs. These phenotypes of SOCS1-deficient DCs were similar to those of CD8alpha(+) DCs, and in the WT spleen, SOCS1 is expressed at higher levels in the Th2-inducing CD4(+) DC subset, relative to the Th1-inducing CD8alpha(+) DC subset. We propose that reduction of the SOCS1 gene expression in DCs leads to CD8alpha(+) DC-like phenotype which promotes Th1-type hyperresponses.  相似文献   

6.
HMGB1 expression and release by bone cells   总被引:5,自引:0,他引:5  
Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone.  相似文献   

7.
Dendritic cells (DCs) induce immunity and immunological tolerance as APCs. It has been shown that DCs secreting IL-10 induce IL-10(+) Tr1-type regulatory T (Treg) cells, whereas Foxp3-positive Treg cells are expanded from naive CD4(+) T cells by coculturing with mature DCs. However, the regulatory mechanism of expansion of Foxp3(+) Treg cells by DCs has not been clarified. In this study, we demonstrated that suppressors of cytokine signaling (SOCS)-3-deficient DCs have a strong potential as Foxp3(+) T cell-inducing tolerogenic DCs. SOCS3(-/-) DCs expressed lower levels of class II MHC, CD40, CD86, and IL-12 than wild-type (WT)-DCs both in vitro and in vivo, and showed constitutive activation of STAT3. Foxp3(-) effector T cells were predominantly expanded by the priming with WT-DCs, whereas Foxp3(+) Treg cells were selectively expanded by SOCS3(-/-) DCs. Adoptive transfer of SOCS3(-/-) DCs reduced the severity of experimental autoimmune encephalomyelitis. Foxp3(+) T cell expansion was blocked by anti-TGF-beta Ab, and SOCS3(-/-) DCs produced higher levels of TGF-beta than WT-DCs, suggesting that TGF-beta plays an essential role in the expansion of Foxp3(+) Treg cells. These results indicate an important role of SOCS3 in determining on immunity or tolerance by DCs.  相似文献   

8.
Our aim was to evaluate the effect of hyperlipidemia on the activation of endogenous alarmin, the high mobility group box 1 (HMGB1) protein, related to systemic inflammation associated with the progression of experimental atherosclerosis and to establish whether statin treatment regulates the HMGB1 signaling pathway. Hyperlipidemia was induced in vivo in golden Syrian hamsters and in monocyte cell culture (U937) by feeding the animals with a high-fat Western diet and by exposing the cells to hyperlipidemic serum. Blood samples, heart, lung and cells were harvested for biochemical, morphological, Western blot, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses. The data revealed that, in the atherosclerotic animal model, the protein HMGB1 and its gene expression were increased and that fluvastatin treatment significantly reduced the release of HMGB1 into the extracellular space. The cell culture experiments demonstrated the relocation of HMGB1 protein from the nucleus to cytoplasm under hyperlipidemic stress. The high level of detected HMGB1 correlated positively with the up-regulation of the advanced glycation end product receptors (RAGE) in the lung tissue from hyperlipidemic animals. During hyperlipidemic stress, the AKT signaling pathway could be activated by HMGB1-RAGE interaction. These results support the existence of a direct correlation between experimentally induced hyperlipidemia and the extracellular release of HMGB1 protein; this might be controlled by statin treatment. Moreover, the data suggest new potentials for statin therapy, with improved effects on patients with systemic inflammation induced by hyperlipidemia.  相似文献   

9.
High mobility group box 1 protein (HMGB1), originally characterized as a nuclear DNA-binding protein, has also been described to have an extracellular role when it is involved in cellular activation and proinflammatory responses. In this study, FLAG-tagged HMGB1 was inducibly expressed in the presence of culture media with or without added IL-1beta, IFN-gamma, or TNF-alpha. HMGB1 purified from cells grown in culture media alone only minimally increased cytokine production by MH-S macrophages and had no effect on murine neutrophils. In contrast, HMGB1 isolated from cells cultured in the presence of IL-1beta, IFN-gamma, and TNF-alpha had enhanced proinflammatory activity, resulting in increased production of MIP-2 and TNF-alpha by exposed cells. IL-1beta was bound to HMGB1 isolated from cells cultured with this cytokine, and purified HMGB1 incubated with recombinant IL-1beta acquired proinflammatory activity. Addition of anti-IL-1beta Abs or the IL-1 receptor antagonist to cell cultures blocked the proinflammatory activity of HMGB1 purified from IL-1beta-exposed cells, indicating that such activity was dependent on interaction with the IL-1 receptor. These results demonstrate that HMGB1 acquires proinflammatory activity through binding to proinflammatory mediators, such as IL-1beta.  相似文献   

10.
High mobility group box protein 1 (HMGB1), a DNA binding nuclear and cytosolic protein, is a proinflammatory cytokine released by monocytes and macrophages. This study addressed the hypothesis that HMGB1 is an immunostimulatory signal that induces dendritic cell (DC) maturation. We show that HMGB1, via its B box domain, induced phenotypic maturation of DCs, as evidenced by increased CD83, CD54, CD80, CD40, CD58, and MHC class II expression and decreased CD206 expression. The B box caused increased secretion of the proinflammatory cytokines IL-12, IL-6, IL-1alpha, IL-8, TNF-alpha, and RANTES. B box up-regulated CD83 expression as well as IL-6 secretion via a p38 MAPK-dependent pathway. In the MLR, B box-activated DCs acted as potent stimulators of allogeneic T cells, and the magnitude of the response was equivalent to DCs activated by exposure to LPS, nonmethylated CpG oligonucleotides, or CD40L. Furthermore, B box induced secretion of IL-12 from DCs as well as IL-2 and IFN-gamma secretion from allogeneic T cells, suggesting a Th1 bias. HMGB1 released by necrotic cells may be a signal of tissue or cellular injury that, when sensed by DCs, induces and/or enhances an immune reaction.  相似文献   

11.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) in human immune system. DC-based tumor vaccine has met with some success in specific malignancies, inclusive of breast cancer. In this study, we electrofused MDA-MB-231 breast cancer cell line with day-3 DCs derived from peripheral blood monocytes, and explored the biological characteristics of fusion vaccine and its anti-tumor effects in vitro. Day-3 mature DCs were generated from day-2 immature DCs by adding cocktails composed of TNF-α, IL-1β, IL-6 and PEG2. Day-3 mature DCs were identified and electofused with breast cancer cells to generate fusion vaccine. Phenotype of fusion cells were identified by fluorescence microscope and flow cytometer. The fusion vaccine was evaluated for T cell proliferation, secretion of IL-12 and IFN-γ, and induction of tumor-specific CTL response. Despite differences in morphology, day-3 and day-7 DC expressed similar surface markers. The secretion of IL-12 and IFN-γ in fusion vaccine group was much higher than that in the control group. Compared with control group, DC-tumor fusion vaccine could better stimulate the proliferation of allogeneic T lymphocytes and kill more breast cancer cells (MDA-MB-231) in vitro. Day-3 DCs had the same function as the day-7 DCs, but with a shorter culture period. Our findings suggested that day-3 DCs fused with whole apoptotic breast cancer cells could elicit effective specific antitumor T cell responses in vitro and may be developed into a prospective candidate for adoptivet immunotherapy.  相似文献   

12.
HJ Yi  GX Lu 《Cellular immunology》2012,277(1-2):44-48
We compared the purities, phenotype, capabilities of antigen uptake and T lymphocytes stimulation abilities of adherent and non-adherent cells of human monocyte-derived dendritic cells (mono-DCs) in GM-CSF, IL-4 and TNF-α culture system. The results show that both the purities and the capabilities of antigen uptake of the adherent DCs are significantly higher than those of non-adherent ones. As for the expression levels of surface markers and the abilities of stimulating lymphocytes proliferation, our results also show that those of adherent DCs are a bit higher than those of non-adherent ones, although the differences are not significant.  相似文献   

13.
During infection, the functional status of the innate immune system is tightly regulated. Although signals resulting in activation have been well characterized, counterregulative mechanisms are poorly understood. Suppressor of cytokine signaling (SOCS) proteins have been characterized as cytokine-inducible negative regulators of Janus kinase/STAT signaling in cells of hemopoietic origin. To analyze whether SOCS proteins could also be induced by pathogen-derived stimuli, we investigated the induction of SOCS-1 and SOCS-3 after triggering of macrophage cell lines, bone marrow-derived dendritic cells, and peritoneal macrophages with CpG-DNA. In this study, we show that CpG-DNA, but not GpC-DNA, induces expression of mRNA for SOCS-1 and SOCS-3 in vitro and in vivo. SOCS mRNA expression could be blocked by chloroquine and was independent of protein synthesis. Inhibitors of the mitogen-activated protein kinase pathway triggered by CpG-DNA were able to impede induction of SOCS mRNA. CpG-DNA triggered synthesis of SOCS proteins that could be detected by Western blotting. SOCS proteins were functional because they inhibited IFN-gamma as well as IL-6- and GM-CSF-induced phosphorylation of STAT proteins. Furthermore, IFN-gamma-induced up-regulation of MHC class II molecules was also prevented. The same effects could be achieved by overexpression of SOCS-1. Hence, the results indicate a substantial cross-talk between signal pathways within cells. They provide evidence for regulative mechanisms of Janus kinase/STAT signaling after triggering Toll-like receptor signal pathways.  相似文献   

14.
Immature dendritic cells (DCs) induce tolerance and mature DCs induce inflammatory immune responses. However, the likelihood of maturation of immature DCs in vivo limits its potential application for suppression of unwanted immune reactions in vivo. The aim of this study was to generate DCs with anti-inflammatory properties in both the immature and mature states. GM-CSF combined with IL-4 drives monocyte differentiation into DCs. As M-CSF is a critical cytokine in development of the monocytic lineage and its level is dramatically elevated in immunosuppressive conditions, we investigated whether M-CSF could replace GM-CSF and generate DCs with distinct functions from umbilical cord blood monocytes. Highly purified umbilical cord blood monocytes cultured with M-CSF and IL-4, in a GM-CSF-independent fashion, differentiated into IL-10(high)IL-12absent cells with a DC phenotype (termed M-DC). Single time stimulation with immature DCs (both M-DCs and DCs) derived from cord blood induced hyporesponsive and regulatory CD4+ T cells. In contrast to mature DCs, mature M-DCs induced decreased Th1 differentiation and proliferation of naive CD4+ T cells in both primary and secondary allogeneic MLR and showed tolerogenic potential. These results demonstrate an unrecognized role for M-CSF in alternative differentiation of monocytes into anti-inflammatory M-DCs and suggest that M-CSF-induced DCs may be of use for suppressing unwanted immune responses.  相似文献   

15.
16.
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.  相似文献   

17.
In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.  相似文献   

18.
The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48 h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1 μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes.  相似文献   

19.
Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5–10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20–25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.  相似文献   

20.
Vitamin C has been reported to shift immune responses toward Th1. In this study, we evaluated whether this effect was by way of dendritic cells. Murine dendritic cells (DCs) were prepared from bone marrow precursors. DCs treated with vitamin C secreted an increased amount of IL-12p70 after activation with LPS. These cells rendered naïve T cells to secrete more Th1 cytokine, IFN-γ, and less Th2-cytokine, IL-5 in the culture supernatants. Vitamin C-treatment also increased phosphorylation of p38 and ERK1/2 in DCs. p38 inhibitor in culture media suppressed the effect of vitamin C to elevate IL-12p70 secretion. In contrast, ERK inhibitor elevated IL-12p70 secretion. In summary, vitamin C taken up into DCs increased IL-12p70 secretion of these cells by modulating the activation of signal molecules, and thus shifted immune responses toward Th1. These data provide us a new insight on the role of vitamin C in modulating immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号