首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation of human blood vessels may become an important tool in bypass surgery and peripheral vascular reconstruction. Ideally cryopreservation of a blood vessel should preserve functional characteristics comparable to those of fresh controls. The key advantage of cryopreservation is the fact that storage at deep subzero temperatures allows storage of structurally intact living vascular tissues for virtually infinite time. Originally developed for long-time storage of isolated cells, the techniques of cryopreservation of tissues are challenged by the fact that these are complex multicellular systems containing diverse types of cells with differing requirements for optimal preservation. Therefore, the post-thaw functional activity of vascular tissues is determined by the type of blood vessel and, in addition, by the cell packing effect. Moreover, evidence from pharmacological studies suggests that cryopreservation induces tissue specific changes in transmembrane signaling and the mechanisms coupling intracellular calcium release, sensitivity and calcium entry into the smooth muscle cells.  相似文献   

2.

Introduction

Human fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.

Methods

Human fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.

Results

The addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.

Conclusion

The inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

3.
Cord blood is a source of hematopoietic stem cells used in transplantation in which hematopoietic reconstitution is necessary. This transplant modality requires the cryopreservation of hematopoietic stem cells (HSCs). Dimethyl sulfoxide has been used as a cryoprotectant (CPA) in the cryopreservation of HSCs; however, it has been demonstrated that Me2SO exhibits toxic side effects to the human body. Due to its stability upon freezing, disaccharides such as trehalose have been investigated as a cryoprotectant. This study investigated the hypothesis that a cryopreservation solution containing intracellular and extracellular trehalose improves the recovery of stem cells after cryopreservation. After thawing, the cells were tested for their viability using the 7AAD stain, CD45+/CD34+ cells were assessed using flow cytometry and the MTT viability assay, and the proportion of hematopoietic progenitor cells was measured using the CFU assay. Our results showed the effectiveness of the solution containing intracellular and extracellular trehalose in the cryopreservation of cord blood cells, demonstrating that trehalose may be an optimal cryoprotectant when present both inside and outside of cells.  相似文献   

4.
Gamete cryopreservation techniques have been applied to several bivalve mollusc species. However, research activity in this area has primarily focused on cryopreserving gametes from edible oysters (Ostreiidae). Few studies have examined the effect of cryoprotectants and freezing protocols in the preservation of spermatozoa from cultured pearl oysters (Pteriidae). Pearl oyster producers are increasingly looking towards the development of improved family lines and, as a consequence, the ability to cryopreserve gametes would bring about significant benefits to the cultured pearl industry. In response to this need, we evaluated the effect of three cryoprotectant additives (CPA) on motility of spermatozoa from the black-lip pearl oyster, Pinctada margaritifera. These additives have previously been used to cryopreserve gametes of other bivalve species. The following CPA mixtures were evaluated: (1) 0.45M trehalose and 0, 0.64, 1.02 and 1.53 M dimethyl sulfoxide (Me(2)SO); (2) 0.2M glucose and 2M Me(2)SO and (3) 1.31 M propylene glycol (PG). The effects of four different freezing protocols on motility of P. margaritifera spermatozoa were also evaluated (slow, medium, medium-rapid and rapid cooling). This study showed that total motility was best retained when spermatozoa were cryopreserved in 0.45 M trehalose and 0, 0.64, 1.02 or 1.53 M Me(2)SO and frozen using slow to medium-rapid cooling rates (2.1-5.2 degrees Cmin(-1)). Rapid freezing through direct plunging of spermatozoa into liquid nitrogen resulted in the lowest overall retention of motility regardless of the CPA additive; however, CPA mixture also influenced retention of motility, with 0.2M glucose in 2M Me(2)SO and 1.31 M PG retaining the lowest levels of motility for the CPAs evaluated.  相似文献   

5.
Trehalose, a disaccharide of glucose, is a highly hydrophilic small molecule (MW?=?342D) and a bioprotectant normally impermeable to the membrane phospholipid bilayer. Di-rhamnolipids, a major component of rhamnolipids, were applied to increase the effect of trehalose in cryopreservation and hypothermic preservation. We found that di-rhamnolipids (10 mg/L) increased the survival of hepatocytes after cryopreservation or hypothermic preservation as indicated by cell viability using trypan blue exclusion and methyl thiazolyl tetrazolium assay. Correspondingly, after hepatocytes were preserved in the presence of di-rhamnolipids, their hepatospecific functions were comparable to those of freshly cultured cells in terms of intracellular glutathione level, albumin secretion, urea production, and metabolic activities of cytochrome P450 isoforms. Measurement of trehalose intracellular concentration showed that its accumulation increased in the presence of di-rhamnolipids (10 mg/L) but was not altered by two other well-known surfactants, Tween-80, and Pluronic 127. Hence, di-rhamnolipids, which are non-toxic, effective, and commercially available, could be a promising protectant by potentiating the function of trehalose against hypothermic or cryopreservation cell damage.  相似文献   

6.
Moritz C  Labbe C 《Cryobiology》2008,56(3):181-188
When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125 mM sucrose and 10% Me2SO. After 14 days of culture, the frozen–thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, −70 °C upright or −20 °C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4 days at 4 °C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain −20 °C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions.  相似文献   

7.
Insufficient cryoprotectant permeation is one of the major obstacles for successful fish embryo cryopreservation. The purpose of this study was to test the effectiveness of osmotic and chemical treatments to enhance cryoprotectant uptake by fish embryos. Japanese whiting Sillago japonica embryos at the somites and tail elongation stages were treated with hyperosmotic sugar solutions (1 M trehalose and sucrose) for 2-6 min, or a permeating agent (2-6 mg/mL pronase) for 30-120 min, and then impregnated with 10-15% DMSO in artificial sea water or aqueous solutions containing inorganic salts (0.125-0.25 M MgCl2 and CaCl2). The viability of the embryos after the treatments was estimated from hatching rates and the internal DMSO concentration was measured by HPLC. Treatment with trehalose for 3 min prior to impregnation with DMSO enhanced the uptake of the cryoprotectant by 45% without significantly affecting embryo viability, whereas pronase had no noticeable effect on cryoprotectant permeation. Incorporation of DMSO into the embryos was enhanced by 143-170% in the presence of 0.25 M MgCl2 and 0.125 M CaCl2 compared to sea water. A combination of treatments with trehalose and MgCl2 was even more effective in promoting DMSO permeation (191% compared to untreated embryos). Tail elongation embryos were less tolerant of the treatments, but had higher DMSO impregnation. In conclusion, the use of trehalose (as dehydrating agent) and MgCl2/CaCl2 (as a vehicle during impregnation) greatly promoted cryoprotectant uptake and may be a promising aid for the successful cryopreservation of fish embryos.  相似文献   

8.
Factors affecting recovery of brain cells from cryopreserved cerebral tissues of fetal rats were examined based on yields of viable cells on cell culture. Favorable preservation was obtained with freezing small pieces (less than 1 mm cube) of brain tissues rather than whole tissues or dissociated single cells, and use of 10% dimethylsulfoxide as a cryoprotectant in liquid nitrogen. As for cell preparation procedures, cell survival was improved when tissues were heated at 32 degrees C during papain digestion and centrifugation. Under favorable conditions, the number of brain cells recovered from cryopreserved tissues corresponded to 20-30% of those from fresh control tissues. Immunocytochemical characteristics of cultured neurons, astrocytes, and oligodendrocytes from cryopreserved and fresh tissues were indistinguishable. Semi-quantitive analyses of microtubule-associated protein-2 (MAP-2) and synaptophysin revealed that there was no difference in the amounts of these markers between cultures from both fresh and cryopreserved tissues. These results suggest that most of all cell types including neurons were equally susceptible to the cryopreservation procedures. We concluded that cryopreservation in liquid nitrogen is an effective method for preservation of embryonic brain tissues for later use in cell culture studies.  相似文献   

9.
Platelet cryopreservation using a trehalose and phosphate formulation   总被引:3,自引:0,他引:3  
Long-term storage of platelets is infeasible due to platelet activation at low temperatures. In an effort to address this problem, we evaluated the effectiveness of a formulation combining trehalose and phosphate in protecting platelet structure and function following cryopreservation. An annexin V binding assay was used to quantify the efficacy of the trehalose and phosphate formulation in suppressing platelet activation during cryopreservation. Of the platelets cryopreserved with the trehalose plus phosphate formulation, 23% +/- 1.2% were nonactivated, compared with 9.8% +/- 0.26% nonactivated following cryopreservation with only trehalose. The presence of both trehalose and phosphate in the cryopreservation medium is critical for cell survival and preincubation in trehalose plus phosphate solutions further enhances viability. The effectiveness of trehalose plus phosphate in preserving platelets in a nonactivated state is comparable to 6% dimethyl sulfoxide (Me(2)SO). Measurements of platelet metabolic activity using an alamarBlue assay also established that trehalose plus phosphate is superior to trehalose alone. Finally, platelets protected by the trehalose plus phosphate formulation exhibit similar aggregation response upon thrombin addition as fresh platelets, but an increase of cytosolic calcium concentration upon thrombin addition was not observed in the cryopreserved platelets. These results suggest that trehalose and phosphate protect several aspects of platelet structure and function during cryopreservation, including an intact plasma membrane, metabolic activity, and aggregation in response to thrombin, but not intracellular calcium release in response to thrombin.  相似文献   

10.
Precision-cut liver slices in culture (PCLS) appears as a useful and widely used model for metabolic studies; the interest to develop an adequate cryopreservation procedure, which would allow maintaining cell integrity upon incubation, is needed to extend its use for human tissues. We have previously shown that cryopreservation of rat PCLS leads to caspase-3 activation and early alterations of their K+ content upon incubation. In this study, we tested the hypothesis that counteracting intracellular K+ loss and/or interfering with cell death signaling pathways could improve the viability of cryopreserved PCLS. PCLS were prepared from male Wistar rat liver and cryopreserved by rapid freezing before incubation. The addition of a caspase inhibitor-Z-DEVD-FMK (2.5 microM)-in the culture medium did not improve viability of cryopreserved PCLS. Incubation of cryopreserved PCLS in a K+ rich medium (135 mM) increased K+ content and avoided caspase-3 activation, but did not improve cell viability. Caspase-3 inhibition, a decrease in cell lysis, and improvement of glycogen content were observed in cryopreserved PCLS after addition of LiCl (100 mM) in the incubation medium. These results indicate that, even if caspase-3 activation is linked to the K+ loss in cryopreserved PCLS, its inhibition does not allow restoring the metabolic capacities. LiCl, acting on a target upstream of caspase-3 inhibition, improves cell viability and allows glycogen accumulation when added in culture medium of cryopreserved PCLS; and could thus be considered as an interesting adjuvant in the culture of cryopreserved PCLS.  相似文献   

11.
The field of stem-cell biology has emerged as a key technology for the treatment of various disorders and tissue regeneration applications. However, a major problem remains in clinical practice, which is the question of whether stem cells preserve their self-renewal and differentiation potential in the culture conditions or not. In the current study, effects of boron on the cryopreservation of human tooth germ stem cells (hTGSCs) were evaluated for the first time. The impacts of various boron concentrations (sodium pentaborate pentahydrate (NaB)) were tested on characterized hTGSCs viability for different time intervals (24, 48, and 72 h). 20 μg/ml NaB with lower Me2SO concentration was found to display positive effects on hTGSCs during repeated freezing and defrosting cycles, and long-term cryopreservation. After thawing, cells were analyzed for their surface antigens and differentiation capacity. hTGSCs were successfully cryopreserved without any change in their mesenchymal stem cell characteristics as they were treated with boron containing freezing medium. In addition, fatty acid composition was examined to demonstrate membrane fatty acid profiles after freeze-thawing. Besides, NaB treatment extended osteogenic and chondrogenic differentiation of hTGSCs remarkably after long-term cryopreservation with respect to control groups. The study clearly suggests that NaB has a protective role on the survival of hTGSCs in short- and long-term cryopreservation. Due to the possible storage of hTGSCs at early ages, development of a functional and reliable cryopreservation media can be designed as a future solution to the dental stem cell banking.  相似文献   

12.
13.
Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies.  相似文献   

14.
This paper reviews original and literature data on the cryoresistance of the cells of marine organisms. The technology for the cryopreservation of these objects includes the selection of freezing conditions and the use, in addition to traditional cryoprotectants, of combinations of exogenous lipids, antioxidants, and disaccharide trehalose as a membrane stabilizing agent. We propose an approach for the preservation of marine invertebrate cells. The approach is based on the use of biologically active substances obtained from the tissues of marine organisms. Our results demonstrated the synergistic activity of these components of cryoprotective mixtures, and, at the same time, the specificity of antioxidant effects. An analysis of the factors that determine the choice of cryoprotectors was performed for various cell types. The development of the cryopreservation methods of marine organisms provides an opportunity for their wide application in both developmental biology and in marine biotechnology and serves as an important prerequisite for the cryobank creation.  相似文献   

15.
There are many compounds that can and have been used as cryoprotectants including disaccharides such as trehalose. Many organisms in nature use trehalose to help protect themselves at colder temperatures. Trehalose has also been used to a limited extent for the preservation of mammalian cells and tissues, but mainly as a supplement to other cryoprotectants like dimethyl sulfoxide. Recently, the use of trehalose as the primary cryoprotectant has gained much interest because of its low-potential cytotoxicity. Trehalose does not readily pass through mammalian cells membranes and research has shown that it is most effective when present on both sides of the cell membrane prior to preservation. Different strategies for introducing disaccharide sugars into cells have been investigated with limited success. In this study, two separate strategies are investigated for the introduction of disaccharide sugars into cells. Electroporation using an electric pulse to create temporary holes in the membrane so that molecules could pass through and a transport peptide (Chariot?) that covalently binds to the molecule of interest and then moves it across the membrane. Both strategies have the potential to load disaccharide sugars into cells at concentrations that would provide ample protection during preservation. In preparation for cryopreservation studies, smooth muscle cells that are difficult to cryopreserve using conventional preservation protocols were used to evaluate and compare the translocation potential of these two strategies using β-galactosidase. Assessment of each loading strategy was done by measuring viability and the presence of β-galactosidase inside the cells. The results indicate that both methods appear feasible as potential delivery systems and that treatment cytotoxicity can be minimized. The next step is definition of the best loading strategy to introduce trehalose into cells followed by preservation by freezing.  相似文献   

16.
Cryopreservation of endothelium is one of the major challenges in the cryopreservation of complex tissues. Human umbilical vein endothelial cells (HUVECs) in suspension are available commercially and recently their post-thaw cell membrane integrity was significantly improved by cryopreservation in 5% dimethyl sulfoxide (Me2SO) and 6% hydroxyethyl starch (HES). However, cryopreservation of cells in monolayers has been elusive. The exact mechanisms of damage during cell monolayer cryopreservation are still under investigation. Here, we show that a combination of different factors contribute to significant progress in cryopreservation of endothelial monolayers. The addition of 2% chondroitin sulfate to 5% Me2SO and 6% HES and cooling at 0.2 or 1 °C/min led to high membrane integrity (97.3 ± 3.2%) immediately after thaw when HUVECs were cultured on a substrate with a coefficient of thermal expansion similar to that of ice. The optimized cryopreservation protocol was applied to monolayers of primary porcine corneal endothelial cells, and resulted in high post-thaw viability (95.9 ± 3.7% membrane integrity) with metabolic activity 12 h post-thaw comparable to unfrozen control.  相似文献   

17.
Intracellular trehalose improves the survival of cryopreserved mammalian cells   总被引:37,自引:0,他引:37  
We report that the introduction of low concentrations of intracellular trehalose can greatly improve the survival of mammalian cells during cryopreservation. Using a genetically engineered mutant of Staphylococcus aureus alpha-hemolysin to create pores in the cellular membrane, we were able to load trehalose into cells. Low concentrations (0.2 M) of trehalose permitted long-term post-thaw survival of more than 80% of 3T3 fibroblasts and 70% of human keratinocytes. These results indicate that simplified and widely applicable freezing protocols may be possible using sugars as intracellular cryoprotective additives.  相似文献   

18.
《Cryobiology》2016,72(3):472-480
A simple method to cryopreserve adherent monolayers of neuronal cells is currently not available, but the development of this technique could facilitate numerous applications in the field of biomedical engineering, cell line development, and drug screening. However, complex tissues of some exceptional animals survive freezing in nature. These animals are known to accumulate several small molecular weight solutes prior to freezing. Following a similar strategy, we investigated the effects of osmolytes such as trehalose, proline, and sucrose as additives to the traditional cryoprotectant dimethyl sulfoxide (Me2SO) in modulating the cryopreservation outcome of mouse neuroblastoma (Neuro-2a) cells. Neuro-2a cells adhered to cell culture plates were incubated for 24 h at varying concentrations of trehalose, proline, sucrose and combinations of these compounds. Cells were cryopreserved for 24 h and cell viability post-freezing and thawing was quantified by trypan blue exclusion assay. On average, only 13.5% of adherent cells survived freezing in the presence of 10% Me2SO alone (control). Pre-incubation of cells with medium containing both trehalose and proline severely decreased cell proliferation, but increased cell recovery to about 53% of control. Furthermore, characterization using Raman microspectroscopy revealed that the addition of both trehalose and proline to 10% Me2SO substantially increased the size, and altered the nature, of ice crystals formed during freezing. Our results suggest that pre-incubation of Neuro-2a cells with trehalose and proline in combination provides cell protection along with alterations of ice structure in order to increase cell survival post-freezing.  相似文献   

19.
D-allose, an aldo-hexose, is a rare sugar whose biological functions remain largely unclear. Recently, we demonstrated a novel inhibitory effect of D-allose on production of reactive oxygen species (ROS). Here, we focused on investigating cryoprotective effects of D-allose on cell viability. Mammalian cell lines including OVCAR-3 (human ovarian cancer), HeLa (human cervical cancer), HaCaT (human skin keratinocytes), HDF (human dermal fibroblasts) and NIH3T3 (murine fibroblasts) cells were frozen at -80 degrees C in culture media with various D-allose concentrations. Cells were allowed to recover for 24 h, 1 week or 1 month prior to survival assessment using the trypan blue dye exclusion test, when cell proliferation was evaluated by MTT assay. A beneficial protective role of D-allose on cell survival was found, similar to that of trehalose (disaccharide of glucose), a recognized cryoprotectant. The results suggest that D-allose as a sole additive may provide effective protection for mammalian cells during freezing. Practical studies now need to be performed with D-allose, for example to determine optimal freezing protocols and explore potential for preservation of tissues or organs at non-freezing temperatures.  相似文献   

20.
We investigated the mechanisms of osmoadaptation in the order Halobacteriales, with special emphasis on Haladaptatus paucihalophilus, known for its ability to survive in low salinities. H. paucihalophilus genome contained genes for trehalose synthesis (trehalose-6-phosphate synthase/trehalose-6-phosphatase (OtsAB pathway) and trehalose glycosyl-transferring synthase pathway), as well as for glycine betaine uptake (BCCT family of secondary transporters and QAT family of ABC transporters). H. paucihalophilus cells synthesized and accumulated ∼1.97–3.72 μmol per mg protein of trehalose in a defined medium, with its levels decreasing with increasing salinities. When exogenously supplied, glycine betaine accumulated intracellularly with its levels increasing at higher salinities. RT-PCR analysis strongly suggested that H. paucihalophilus utilizes the OtsAB pathway for trehalose synthesis. Out of 83 Halobacteriales genomes publicly available, genes encoding the OtsAB pathway and glycine betaine BCCT family transporters were identified in 38 and 60 genomes, respectively. Trehalose (or its sulfonated derivative) production and glycine betaine uptake, or lack thereof, were experimentally verified in 17 different Halobacteriales species. Phylogenetic analysis suggested that trehalose synthesis is an ancestral trait within the Halobacteriales, with its absence in specific lineages reflecting the occurrence of gene loss events during Halobacteriales evolution. Analysis of multiple culture-independent survey data sets demonstrated the preference of trehalose-producing genera to saline and low salinity habitats, and the dominance of genera lacking trehalose production capabilities in permanently hypersaline habitats. This study demonstrates that, contrary to current assumptions, compatible solutes production and uptake represent a common mechanism of osmoadaptation within the Halobacteriales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号