首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Freeman TC  Durand S  Kiper DC  Carandini M 《Neuron》2002,35(4):759-771
Neurons in primary visual cortex (V1) are thought to receive inhibition from other V1 neurons selective for a variety of orientations. Evidence for this inhibition is commonly found in cross-orientation suppression: responses of a V1 neuron to optimally oriented bars are suppressed by superimposed mask bars of different orientation. We show, however, that suppression is unlikely to result from intracortical inhibition. First, suppression can be obtained with masks drifting too rapidly to elicit much of a response in cortex. Second, suppression is immune to hyperpolarization (through visual adaptation) of cortical neurons responding to the mask. Signals mediating suppression might originate in thalamus, rather than in cortex. Thalamic neurons exhibit some suppression; additional suppression might arise from depression at thalamocortical synapses. The mechanisms of suppression are subcortical and possibly include the very first synapse into cortex.  相似文献   

2.
Li W  Piëch V  Gilbert CD 《Neuron》2006,50(6):951-962
Contour integration is an important intermediate stage of object recognition, in which line segments belonging to an object boundary are perceptually linked and segmented from complex backgrounds. Contextual influences observed in primary visual cortex (V1) suggest the involvement of V1 in contour integration. Here, we provide direct evidence that, in monkeys performing a contour detection task, there was a close correlation between the responses of V1 neurons and the perceptual saliency of contours. Receiver operating characteristic analysis showed that single neuronal responses encode the presence or absence of a contour as reliably as the animal's behavioral responses. We also show that the same visual contours elicited significantly weaker neuronal responses when they were not detected in the detection task, or when they were unattended. Our results demonstrate that contextual interactions in V1 play a pivotal role in contour integration and saliency.  相似文献   

3.
《Journal of Physiology》1996,90(3-4):179-184
Brief epochs of pairing of low frequency synaptic activation and postsynaptic depolarization, in vitro, in supragranular neurons of mature guinea-pig visual cortex lead to a transient (20–60 min) synaptic potentiation. This process is due to a true up-regulation of excitatory synapse efficiency onto the activated neuron. The potentiation requires NMDA receptor activation and a postsynaptic calcium signal for induction and it is modifiable by endogenous nitric oxide (NO) production in the mature cortex. In the cortex of young animals (< PND 21), the pairing-induced potentiation is robust and depends on a postsynaptic calcium signal but it is independent of NMDA receptor activation and NO production. The ability of cortical synaptosomes to release endogenous glutamate is enhanced by NMDA receptor activation and this enhancement is NO-dependent. The NO signal, however, does not amplify the glutamate release of all synapses but only those that have activated voltage-gated calcium channels and were presumably more active at the time of the NO signal. Electrophysiological recordings from visual cortical neurons in anesthetized cats with local iontophoresis of compounds that inhibit or facilitate endogenous cortical NO production reveal the capacity for NO to modulate visual responses in vivo. NO appears to act in the intact cortex by amplifying signals of visual inputs that were co-active at the time of the NO production. The adult visual cortex is capable of dramatic alterations in synaptic efficiency over brief periods suggesting a dynamic cortical network. NMDA receptors and nitric oxide contribute to these processes.  相似文献   

4.
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.  相似文献   

5.
Li Z 《Spatial Vision》2000,13(1):25-50
The activities of neurons in primary visual cortex have been shown to be significantly influenced by stimuli outside their classical receptive fields. We propose that these contextual influences serve pre-attentive visual segmentation by causing relatively higher neural responses to important or conspicuous image locations, making them more salient for perceptual pop-out. These locations include boundaries between regions, smooth contours, and pop-out targets against backgrounds. The mark of these locations is the breakdown of spatial homogeneity in the input. for instance, at the border between two texture regions of equal mean luminance. This breakdown causes changes in contextual influences, often resulting in higher responses at the border than at surrounding locations. This proposal is implemented in a biologically based model of VI in which contextual influences are mediated by intra-cortical horizontal connections. The behavior of the model is demonstrated using examples of texture segmentation, figure-ground segregation, target-distractor asymmetry, and contour enhancement, and is compared with psychophysical and physiological data. The model predicts (1) how neural responses should be tuned to the orientation of nearby texture borders, (2) a set of qualitative constraints on the structure of the intracortical connections, and (3) stimulus-dependent biases in estimating the locations of the region borders by pre-attentive vision.  相似文献   

6.
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.  相似文献   

7.
Shapley R  Hawken M  Ringach DL 《Neuron》2003,38(5):689-699
To test theories of orientation selectivity in primary visual cortex (V1), we have done experiments to measure the dynamics of orientation tuning of single neurons in the V1 cortex of macaque monkeys. Based on our dynamics results, we propose that a V1 cell's orientation selectivity is generated mainly by both tuned enhancement and global suppression. Enhancement near the preferred orientation is probably caused by feed-forward input from LGN (plus amplification by cortical-cortical interaction). Global suppression could be supplied by cortical inhibition. Additionally, in about 1/3 of V1 neurons (usually the most sharply tuned) there is tuned suppression, centered near the cell's preferred orientation but broader than tuned enhancement. These mechanisms also can explain important features of steady-state selectivity in the V1 neuron population. Furthermore, similar neuronal mechanisms may be used generally throughout the cerebral cortex.  相似文献   

8.
9.
10.
Phase-of-firing coding of natural visual stimuli in primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.  相似文献   

11.
12.
Priebe NJ  Ferster D 《Neuron》2005,45(1):133-145
Direction selectivity in simple cells of primary visual cortex, defined from their spike responses, cannot be predicted using linear models. It has been suggested that the shunting inhibition evoked by visual stimulation is responsible for the nonlinear component of direction selectivity. Cortical inhibition would suppress a neuron's firing when stimuli move in the nonpreferred direction, but would allow responses to stimuli in the preferred direction. Models of direction selectivity based solely on input from the lateral geniculate nucleus, however, propose that the nonlinear response is caused by spike threshold. By extracting excitatory and inhibitory components of synaptic inputs from intracellular records obtained in vivo, we demonstrate that excitation and inhibition are tuned for the same direction, but differ in relative timing. Further, membrane potential responses combine in a linear fashion. Spike threshold, however, quantitatively accounts for the nonlinear component of direction selectivity, amplifying the direction selectivity of spike output relative to that of synaptic inputs.  相似文献   

13.
Stettler DD  Yamahachi H  Li W  Denk W  Gilbert CD 《Neuron》2006,49(6):877-887
While recent studies of synaptic stability in adult cerebral cortex have focused on dendrites, how much axons change is unknown. We have used advances in axon labeling by viruses and in vivo two-photon microscopy to investigate axon branching and bouton dynamics in primary visual cortex (V1) of adult Macaque monkeys. A nonreplicative adeno-associated virus bearing the gene for enhanced green fluorescent protein (AAV.EGFP) provided persistent labeling of axons, and a custom-designed two-photon microscope enabled repeated imaging of the intact brain over several weeks. We found that large-scale branching patterns were stable but that a subset of small branches associated with terminaux boutons, as well as a subset of en passant boutons, appeared and disappeared every week. Bouton losses and gains were both approximately 7% of the total population per week, with no net change in the overall density. These results suggest ongoing processes of synaptogenesis and elimination in adult V1.  相似文献   

14.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

15.
Recent findings from the study of primary visual cortex in humans and animals blur the distinction between early and late visual processing. Under some conditions, the activity of neurons in primary visual cortex appears as close or closer to perception than activity in 'higher' visual areas.  相似文献   

16.
17.
Yang Q  Qi X  Yunjiu W 《Bio Systems》2000,58(1-3):203-209
The visual system can be considered as a multi-layered and dynamic image processing system. According to experimental evidence, the receptive field (RF) organization is characterized by spatio-temporal properties. The modified extended Gabor (MEG) function model was proposed to describe the main spatio-temporal properties of RF at different levels of visual pathway. Based on the MEG model, a three-layered dynamic coding model was constructed for a complex cell. The responses of the complex cell depend on synaptic events from a simple cell assembly within a time window. The membrane potential evolution equation was applied to the analysis of the length of a time window. The simulation results demonstrated that a complex cell plays as a coincidence detector in encoding synaptic events within the time window.  相似文献   

18.
Coding of natural scenes in primary visual cortex   总被引:4,自引:0,他引:4  
Weliky M  Fiser J  Hunt RH  Wagner DN 《Neuron》2003,37(4):703-718
Natural scene coding in ferret visual cortex was investigated using a new technique for multi-site recording of neuronal activity from the cortical surface. Surface recordings accurately reflected radially aligned layer 2/3 activity. At individual sites, evoked activity to natural scenes was weakly correlated with the local image contrast structure falling within the cells' classical receptive field. However, a population code, derived from activity integrated across cortical sites having retinotopically overlapping receptive fields, correlated strongly with the local image contrast structure. Cell responses demonstrated high lifetime sparseness, population sparseness, and high dispersal values, implying efficient neural coding in terms of information processing. These results indicate that while cells at an individual cortical site do not provide a reliable estimate of the local contrast structure in natural scenes, cell activity integrated across distributed cortical sites is closely related to this structure in the form of a sparse and dispersed code.  相似文献   

19.
It is clear from reviewing the findings of our own studies and those of others that the cerebral cortex has combined two very different strategies of organisation. Firstly it has a strictly defined genetically determined substrate of specific neurons classes, specific rules for which kinds of cells interconnect, a laminar architecture where efferent and afferent relays and interlaminar links are predetermined. But, as well, a second strategy allows great developmental lability in the precise spatial patterns of intralaminar circuits of the excitatory neurons and in the actual weights of excitatory and inhibitory synapses that are contributed to each neuron. This second strategy presumably allows the cortex to be tailor-made to the early experience of each individual and, as well, allow for lability of responses to different conditions of stimulation and adjustment of the system to compensate to some degree for injuries affecting afferents and circuitry in the adult system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号