首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The antennal lobe (AL) is the primary structure in the Drosophila brain that relays odor information from the antennae to higher brain centers. The characterization of uniglomerular projection neurons (PNs) and some local interneurons has facilitated our understanding of olfaction; however, many other AL neurons remain unidentified. Because neuron types are mostly specified by lineage and temporal origins, we use the MARCM techniques with a set of enhancer-trap GAL4 lines to perform systematical lineage analysis to characterize neuron morphologies, lineage origin and birth timing in the three AL neuron lineages that contain GAL4-GH146-positive PNs: anterodorsal, lateral and ventral lineages. The results show that the anterodorsal lineage is composed of pure uniglomerular PNs that project through the inner antennocerebral tract. The ventral lineage produces uniglomerular and multiglomerular PNs that project through the middle antennocerebral tract. The lateral lineage generates multiple types of neurons, including uniglomeurlar PNs, diverse atypical PNs, various types of AL local interneurons and the neurons that make no connection within the ALs. Specific neuron types in all three lineages are produced in specific time windows, although multiple neuron types in the lateral lineage are made simultaneously. These systematic cell lineage analyses have not only filled gaps in the olfactory map, but have also exemplified additional strategies used in the brain to increase neuronal diversity.  相似文献   

2.
3.
The Drosophila CNS derives from a population of neural stem cells, called neuroblasts (NBs), which delaminate individually from the neurogenic region of the ectoderm. In the embryonic ventral nerve cord each NB can be uniquely identified and gives rise to a specific lineage consisting of neurons and/or glial cells. This 'NB identity' is dependent on the position of the progenitor cells in the neuroectoderm before delamination. The positional information is provided by the products of segment polarity and dorsoventral (D/V) patterning genes. Subsequently, 'cell fate genes' like huckebein (hkb) and eagle (eg) contribute to the generation of specific NB lineages. These genes act downstream of segment polarity and D/V patterning genes and regulate different processes such as the generation of glial cells and the determination of serotonergic neurons.  相似文献   

4.
One of the major goals of neurobiology is to describe, in molecular terms, how a neural progenitor cell can generate an ordered series of uniquely fated neurons and glia. It has become clear that many, or all, neural-subtype identities can be linked to sequentially changing regulatory programs within neural precursors. Recent studies shed light on regulatory inputs and timing mechanisms that generate temporally defined cell identities, and new contributions are beginning to establish a link between the temporal network and cell function.  相似文献   

5.
6.
Drosophila embryos lacking the homeotic gene labial (lab) show two types of defects in brain development: (1) cells in the brain lab domain do not express neuronal markers or extend axons, and (2) axons originating from outside the lab domain stop at this region or project ectopically. A severe disruption of neuronal patterning and axon scaffolding is the net result. It is not clear how the absence of Lab can result in both neuronal fate defects and axon pathfinding defects. I have expressed Lab in short pulses in lab loss-of- function embryos, and this gave almost complete rescue; for example, the tritocerebral commissure was restored. Rescue only occurred when Lab was provided at the time when cells in the brain are adopting a neuronal fate. Lab expression later, when the first axons are seen in the lab domain, did not give rescue. I conclude that Lab expression helps to establish neuronal identity in the lab domain, and these neurons act as a permissive substrate for axon extension. However, Lab itself is not required at the time of axon pathfinding through this region. Received: 31 May 2000 / Accepted: 5 July 2000  相似文献   

7.
The Drosophila bristle lineage is an excellent system in which to study how cell cycle and fate determination are synchronized in invariant cell lineages. In this model, five different cells arise from a single precursor cell, pI, after four asymmetric cell divisions. Cell diversity is achieved by the asymmetric segregation of cell determinants, such as Numb and Neuralized (Neur), resulting in differential activation of the Notch (N) pathway. We show that down-regulation of Cdc2, by over-expressing Tribbles, Dwee1, and Dmyt1 (three negative regulators of Cdc2) or by using thermo-sensitive Cdc2 mutant flies, delayed pI mitosis, and altered the polarity and the number of subsequent cell divisions. These modifications were associated with a mother-daughter cell fate transformation as the pI cell acquired the identity of the secondary precursor cell, pIIb. This type of change in cell identity only occurred when the N signaling pathway was inactive since ectopic N signaling transformed pI to pIIa-progeny fate. These transformations in cell identity suggest that, although synchronized, cell cycle and fate determination are independent phenomena in the bristle lineage.  相似文献   

8.
Summary A blastoderm fate map has been prepared for Drosophila, using mosaics of a temperature-sensitive mutation, shibire (shi). The mutation can cause abnormal flight muscle morphology, inducible only by a short heat pulse in early metamorphosis. Thus muscle lineage and development are unperturbed until the heat pulse in the early pupa. The developmental focus of the shi muscle phenotype maps to the ventral thorax at the expected site of thoracic mesoderm, and probably indicates the blastoderm progenitors of the adult flight muscle. The fate map provides greater detail than previously available for the dorsolongitudinal fibers (DLM) of flight muscle, showing wide separation of the fibers of flight muscle. DLM fibers a and b map close together, and far anterior to fibers e and f, which also map together. On a fate map, common developmental focus indicates a common blastoderm origin. Thus, the observed pattern for DLM fibers suggests that the blastoderm progenitors for each of these syncytial fiber pairs (a, b; e, f) include only one or two cells. It follows that there is usually a single genotype within each fiber pair (a, b; e, f), and that this genotype is directly reflected in the fiber phenotype. In a large number of cases, DLM fibers a and b differ in phenotype from other DLM fibers, in parallel with their other differences (e.g., timing of development in pupa, innervation, motor activity). The separation of fate map locations of the developmental focus for DLM fibers within mesoderm suggests that specific fibers of flight muscle may, in normal development, originate in all three thoracic mesodermal parasegments.  相似文献   

9.
《Developmental cell》2022,57(9):1193-1207.e7
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

10.
The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to 'double bristle' sense organs (reflecting a IIb-to-IIa transformation) or 'single bristle' sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.  相似文献   

11.
Control of cell fate in a vertebrate neurogenic lineage   总被引:4,自引:0,他引:4  
P H Patterson 《Cell》1990,62(6):1035-1038
  相似文献   

12.
13.
The Drosophila proneural genes specify neuronal determination among cells within the ectoderm. Here we address the question of whether proneural genes also affect the specification of glia, the most abundant cell type in the nervous system. We provide evidence that the proneural gene daughterless is essential for the formation of two major classes of PNS glia. In contrast, the proneural genes in the achaete-scute complex have no detectable effect on the specification and differentiation of these PNS glia and certain CNS glia. We also show that, as with neuronal development, glial determination is restricted by the neurogenic genes neuralized, Delta, and the genes of the Enhancer of split complex. Finally, we demonstrate that prospero, a gene involved in neuronal differentiation, also affects glial development. These results demonstrate extensive overlap in the genetic control of glial and neuronal development.Abbreviations ß galactosidase - (ß-gal) Alkaline phosphatase - (AP) Central nervous system - (CNS) Peripheral nervous system - (PNS) Home domain binding sites - (HDS) Helix-loop-helix - (HLH) Peripheral glia - (PG) Exit glia - (EG) Dorsal roof glia - (DRG) Intersegmental glia - (ISG) Midline glia - (MG) chordotonal - (CH) Sensory mother cell  相似文献   

14.
The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF) receptor, and Jun N-terminal kinase (JNK) signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF)-Breathless (FGF receptor) axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.  相似文献   

15.
The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map [Urbach, R., Technau, G.M. (2003a) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130, 3621-3637]. However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles ("primary axon bundles" or "PABs") are now available [Younossi-Hartenstein, A., Nguyen, B., Shy, D., Hartenstein, V. 2006. Embryonic origin of the Drosophila brain neuropile. J. Comp. Neurol. 497, 981-998]. In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops.  相似文献   

16.
17.
Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger than that of C.?elegans. Indeed, given the greater number of neuronal interconnections in larger brains, simply minimizing the length of connections results in unrealistic configurations, with multiple neurons occupying the same position in space. Avoiding such configurations, or volume exclusion, repels neurons from each other, thus counteracting wiring economy. Here we test whether wiring economy together with volume exclusion can explain the placement of neurons in a module of the Drosophila melanogaster brain known as lamina cartridge [5-13]. We used newly developed techniques for semiautomated reconstruction from serial electron microscopy (EM) [14] to obtain the shapes of neurons, the location of synapses, and the resultant synaptic connectivity. We show that wiring length minimization and volume exclusion together can explain the structure of the lamina microcircuit. Therefore, even in brains larger than that of C.?elegans, at least for some circuits, optimization can play an important role in individual neuron placement.  相似文献   

18.
Cell fate in the Drosophila ommatidium   总被引:23,自引:0,他引:23  
Lesions in the Drosophila gene sevenless cause the cell normally destined to differentiate as photoreceptor 7 of the ommatidium to become an accessory lens-secreting cell, the equatorial cone cell. In both P-element- and EMS-induced alleles, the developmental transformation occurs identically. The mutation is cell autonomous, showing that the developmental failure is intrinsic to the transformed cell. Histological and immunological analyses indicate that the cell fails to operate any photoreceptor differentiation machinery prior to adopting the cone cell pathway.  相似文献   

19.
Neurogenesis in the ventral CNS of Drosophila was studied using staining with toluidine blue and birth dating of cells monitored by incorporation of bromodeoxyuridine into DNA. The ventral CNS of the larva contains sets of neuronal stem cells (neuroblasts) which are thought to be persistent embryonic neuroblasts. Each thoracic neuromere has at least 47 of these stem cells whereas most abdominal neuromeres possess only 6. They occur in stereotyped locations so that the same neuroblast can be followed from animal to animal. The thoracic neuroblasts begin enlarging at 18-26 hr of larval life, DNA synthesis commences by 31-36 hr, and the first mitoses occur shortly thereafter. Mitotic activity continues through the remainder of larval life with the neuroblasts showing a minimum cell cycle time of less than 55 min during the late third larval instar. By 12 hr after pupariation each neuroblast has produced approximately 100 progeny which are collected with it into a discrete packet. The progeny accumulate in an immature, arrested state and only finish their differentiation into mature neurons with the onset of metamorphosis. Most of the abdominal neuroblasts differ from their thoracic counterparts in their minimum cell cycle time (less than 2 hr) and the duration of proliferation (from about 50 to 90 hr of larval life). Neurons produced during the larval stage account for more than 90% of the cells found in the ventral CNS of the adult.  相似文献   

20.
Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localisation. These data also provide initial evidence that both processes are coupled to cell cycle progression and growth control, thereby regulating a binary switch between proliferative stem self-renewal and differentiative progenitor cell specification. Considering the evolutionary conservation of some of the mechanisms and molecules involved, these data provide a rationale and genetic model for understanding stem cell self-renewal and differentiation in general. The new data gained in Drosophila may therefore lead to conceptual advancements in understanding the aetiology and treatment of human neurological disorders such as brain tumor formation and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号