首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

2.
Exposing rat Schwann cells co-cultured with nerve cells to a reconstituted basement membrane induced the formation of myelin segments by Schwann cells. This occurred in a serum-free culture medium in which, in the absence of this matrix, Schwann cells proliferate but fail to differentiate. This reconstituted basement membrane was prepared from solubilized extracellular matrix proteins synthesized by a basement membrane-producing murine tumor. The major constituents of this reconstituted matrix are collagen type IV, laminin, heparan sulfate proteoglycan, entactin, and nidogen. The matrix also elicited striking morphological changes in Schwann cells, inducing them to spread longitudinally along the nerve fibers (a necessary early step in the process of ensheathment of nerve fibers). Several observations indicated that the effect of the matrix was exerted directly on Schwann cells and not indirectly through an effect on nerve cells. First, the matrix-induced cell spreading occurred only in areas in which Schwann cells directly contacted the matrix; Schwann cells that were associated with the same nerve fibers but that did not themselves directly contact the matrix did not exhibit spreading. Second, the matrix-induced alteration in Schwann cell morphology was observed in cultures in which the nerve cells were removed. These results provide direct evidence that basement membrane contact induces normal Schwann cell differentiation, and support the idea that Schwann cell differentiation in vivo may be regulated by the appearance of the basement membrane, which normally envelops terminally differentiating Schwann cells.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

4.
Primary cultures of rat dorsal root ganglion Schwann cells were used to assay the efficacy of PC12 cells in stimulating Schwann cell proliferation. Co-cultures of PC12 cells and Schwann cells assayed by [3H]thymidine labeling followed by autoradiography showed proliferation of Schwann cells only where contact occurred between PC12 neurites and Schwann cells. Membranes derived from PC12 cells were shown to have many characteristics similar to membranes derived from sensory neurons; both could mimic whole cells in stimulating Schwann cell division; both were inactivated by mild heat treatment and by trypsinization, and both elevated intracellular cyclic AMP concentrations in Schwann cells 16 h after addition of membranes. We conclude that PC12 cells will be a valuable source for the isolation of the neuronal cell surface component which controls proliferation of Schwann cells during development of the peripheral nervous system.  相似文献   

5.
Schwann cells provide a favorable microenvironment for successful regeneration of the injured peripheral nerve. Even though the roles of extracellular matrix proteins in the Schwann cell physiology have long been studied, the precise function of nidogen, a ubiquitous component of the basal lamina, in Schwann cells is unknown. In this study, we show that the protein and mRNA messages for nidogens are up-regulated in the sciatic nerve after sciatic nerve transection. We demonstrate that recombinant nidogen-1 increased the process formation of Schwann cells cultured from adult rat sciatic nerves and that nidogen-1 prevented Schwann cells from serum-deprivation-induced death. In addition, nidogen-1 promoted spontaneous migration of Schwann cells in two-independent migration assays. The Schwann cell responses to the recombinant nidogen-1 were specific because the nidogen-binding ectodomain of tumor endothelial marker 7 inhibited the nidogen responses without affecting Schwann cell response to laminin. Finally, we found that beta1 subunit-containing integrins play a key role in the nidogen-induced process formation, survival, and migration of Schwann cells. Altogether, these results indicate that nidogen has a prosurvival and promigratory activity on Schwann cells in the peripheral nerve.  相似文献   

6.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2 mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

7.
The availability of tissue culture systems that allow the growth of nerve cells, Schwann cells, and fibroblasts separately or in various combinations now makes possible investigation of the role of cell interactions in the development of the peripheral nervous system. Using these systems it was earlier found that basal lamina is formed on the Schwann cell surface in cultures of sensory ganglion cells and Schwann cells without fibroblasts. It is here reported that the presence of nerve cells is required for the generation of basal lamina on the Schwann cell plasmalemma. Utilizing nerve cell-Schwann cell preparations devoid of fibroblasts, this was found in the following ways. (1) When nerve cells are removed from 3- to 5-week-old cultures, the basal lamina disappears from Schwann cells. (2) If nerve cells are added back to such Schwann cell populations, Schwann cell basal lamina reappears. (3) Removal of nerve cells from older (3–4 months) cultures does not lead to basal lamina loss; areas presumed not to have been coated with lamina before neurite degeneration remain so, suggesting that the lamina persists but is not reformed. (4) If basal lamina is removed with trypsin, it is reformed in neuron plus Schwann cell cultures but not in Schwann cell populations alone. Thus, the formation but not the persistence of Schwann cell basal lamina requires the presence of nerve cells.  相似文献   

8.
In the developing peripheral nerve, Schwann cells proliferate rapidly and then become quiescent, an essential step in control of Schwann cell differentiation. Cell proliferation is controlled by growth factors that can exert positive or inhibitory influences on DNA synthesis. It has been well established that neonatal Schwann cells divide very slowly in culture when separated from neurons but here we show that when culture was continued for several months some cells began to proliferate rapidly and non-clonal lines of immortalised Schwann cells were established which could be passaged for over two years. These cells had a similar molecular phenotype to short-term cultured Schwann cells, except that they expressed intracellular and cell surface fibronectin. The difference in proliferation rates between short- and long-term cultured Schwann cells appeared to be due in part to the secretion by short-term cultured Schwann cells of growth inhibitory activity since DNA synthesis of long-term, immortalised Schwann cells was inhibited by conditioned medium from short-term cultures. This conditioned medium also inhibited DNA synthesis in short-term Schwann cells stimulated to divide by glial growth factor or elevation of intracellular cAMP. The growth inhibitory activity was not detected in the medium of long-term immortalised Schwann cells, epineurial fibroblasts, a Schwannoma (33B), astrocytes or a fibroblast-like cell-line (3T3) and it did not inhibit serum-induced DNA synthesis in epineurial fibroblasts, 33B cells or 3T3 cells. The activity was apparently distinct from transforming growth factor-beta, activin, IL6, epidermal growth factor, atrial natriuretic peptide and gamma-interferon and was heat and acid stable, resistant to collagenase and destroyed by trypsin treatment. We raise the possibility that loss of an inhibitory autocrine loop may contribute to the rapid proliferation of long-term cultured Schwann cells and that an autocrine growth inhibitor may have a role in the cessation of Schwann cell division that precedes differentiation in peripheral nerve development.  相似文献   

9.
Schwann cells as regulators of nerve development.   总被引:15,自引:0,他引:15  
Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509-527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, beta neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.  相似文献   

10.
Kang  Hyuno  Tian  Le  Thompson  Wesley 《Brain Cell Biology》2003,32(5-8):975-985
Schwann cells and axons labeled by transgene-encoded, fluorescent proteins can be repeatedly imaged in living mice to observe the reinnervation of neuromuscular junctions. Axons typically return to denervated junctions by growing along Schwann cells contained in the old nerve sheaths or “Schwann cell tubes”. These axons then commonly “escape” the synaptic sites by growing along the Schwann cell processes extended during the period of denervation. These “escaped fibers” grow to innervate adjacent synaptic sites along Schwann cells bridging these sites. Within the synaptic site, Schwann cells, originally positioned above the synaptic site continue to cover the acetylcholine receptors (AChRs) immediately following denervation, but gradually vacate portions of this site. When regenerating axons return, they first deploy along the Schwann cells and ignore sites of AChRs vacated by Schwann cells. In many cases these vacated sites are never reinnervated and are ultimately lost. Following partial denervation, Schwann cells grow in an apparently tropic fashion from denervated to nearby innervated synaptic sites and serve as the substrates for nerve sprouting. These experiments show that Schwann cells provide pathways that stimulate axon growth and insure the rapid reinnervation of denervated or partially denervated muscles.  相似文献   

11.
Angiogenic and invasive properties of neurofibroma Schwann cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Neurofibromas are benign tumors from patients with von Recklinghausen Neurofibromatosis (NF1) that are comprised primarily of Schwann cells. These Schwann cells are found both in association with axons and in the extracellular matrix that is prevalent in neurofibromas, and in which fibroblasts are also abundant. An unresolved question has been whether cells in neurofibromas are normal cells or are intrinsically abnormal. We have tested the hypothesis that cells in neurofibromas are abnormal and have shown that neurofibroma Schwann cells, unlike normal Schwann cells, promote angiogenesis in the chick chorioallantoic membrane model system, and invade basement membranes in this system. In contrast, neurofibroma fibroblasts neither promote angiogenic reactions nor invade basement membranes. When injected into nude mice, neurofibroma Schwann cells do not form progressive tumors. These results suggest that NF1 Schwann cells differ from normal Schwann cells, that they are preneoplastic, and that genetic and/or epigenetic changes in Schwann cells may be required for development of peripheral nerve tumors in NF1.  相似文献   

12.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   

13.
Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.  相似文献   

14.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro , the NF1-derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1-derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1-derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1-derived Schwann cells have increased RAS activity and a three-fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1-derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP-related domain of neurofibromin into the NF1-derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1-derived Schwann cells the Schwann cells expressing the GAP-related domain expressed about one-half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1-drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

15.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

16.
We have developed a potential model of Schwann cell tumor formation in neurofibromatosis type 1 (NF1). We show that mouse Schwann cells heterozygous or null at Nf1 display angiogenic and invasive properties, mimicking the behavior of Schwann cells from human neurofibromas. Mutations at Nf1 are insufficient to promote Schwann cell hyperplasia. Here we show that Schwann cell hyperplasia can be induced by protein kinase A activation in mutant cells. Removal of serum from the culture medium also stimulates hyperplasia, but only in some mutant cells. After serum removal, clones of hyperproliferating Schwann cells lose contact with axons in vitro, develop growth factor-independent proliferation, and exhibit decreased expression of the cell differentiation marker P0 protein; hyperproliferating cells develop after a 1-week lag in Schwann cells heterozygous at Nf1. The experiments suggest that events subsequent to Nf1 mutations are required for development of Schwann cell hyperplasia. Finally, an anti-Ras farnesyl protein transferase inhibitor greatly diminished both clone formation and hyperproliferation of null mutant cells, but not invasion; farnesyl transferase inhibitors could be useful in treating benign manifestations of NF1.  相似文献   

17.
Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.  相似文献   

18.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro, the NF1‐derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1‐derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1‐derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1‐derived Schwann cells have increased RAS activity and a three‐fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1‐derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP‐related domain of neurofibromin into the NF1‐derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1‐derived Schwann cells the Schwann cells expressing the GAP‐related domain expressed about one‐half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1‐drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

19.
Vestibular nerve Schwann cells are predisposed to develop schwannoma. While knowledge concerning this condition has greatly improved, little is known about properties of normal vestibular Schwann cells. In an attempt to understand this predisposition, we evaluated cell density regulation and proliferative features of these cells taken from 6-day-old rats. Data were compared to those obtained with sciatic Schwann cells. In both vestibular and sciatic 7-day-old cultures, Schwann cells appear as bipolar or flattened cells. However, sciatic and vestibular cells greatly differ in other aspects: on poly-L-lysine coating, sciatic cells specifically synthesize myelin basic protein, while expression of P0 mRNAs is restricted to some vestibular cells. Laminin increases sciatic cell density but not that of vestibular cells. Fibronectin selectively enhances the proliferation of vestibular Schwann cells and lacks an effect on sciatic ones. Comparison of cell density changes between sciatic and vestibular cells shows that they are sensitive to two different sets of growth factors. Progesterone and FGF-2 combined with forskolin selectively enhance the cell density of sciatic glia, while IGF-1 and GDNF specifically increase vestibular cell density. Furthermore, BrdU incorporation assays indicate that GDNF is also a mitogen for vestibular cells. Altogether, vestibular Schwann cells display phenotypic features and responsiveness to exogenous signals that are significantly different from sciatic Schwann cells, suggesting that vestibular glia form a subpopulation of Schwann cells.  相似文献   

20.
Signaling by laminins and axonal neuregulin has been implicated in regulating axon sorting by myelin-forming Schwann cells. However, the signal transduction mechanisms are unknown. Focal adhesion kinase (FAK) has been linked to alpha6beta1 integrin and ErbB receptor signaling, and we show that myelination by Schwann cells lacking FAK is severely impaired. Mutant Schwann cells could interdigitate between axon bundles, indicating that FAK signaling was not required for process extension. However, Schwann cell FAK was required to stimulate cell proliferation, suggesting that amyelination was caused by insufficient Schwann cells. ErbB2 receptor and AKT were robustly phosphorylated in mutant Schwann cells, indicating that neuregulin signaling from axons was unimpaired. These findings demonstrate the vital relationship between axon defasciculation and Schwann cell number and show the importance of FAK in regulating cell proliferation in the developing nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号