首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perry GH 《Theriogenology》2007,68(1):38-55
Bovine virus diarrhea virus (BVDV) is a pathogen of the bovine reproductive system causing reduced conception rates, abortions and persistently infected calves. Most if not all strains of BVDV are transmissible by natural mating and AI. For international trade, it is recommended that in vitro fertilized embryos be washed according to the IETS Manual. However, BVDV may not be entirely washed out, resulting in possible transmission risks to recipients. Donor cows, donor bulls and biological agents are all possible sources of contamination. The process for producing in vitro produced (IVP) embryos is complex and non-standard, and some procedures can contribute to spread of BVDV to uninfected embryos. The structure of the zone pellucida (ZP) of IVP embryos permits adherence of BVDV to the ZP. To estimate the risk of producing infected recipients and persistently infected calves from abattoir-derived IVP embryos, a quantitative risk assessment model using Microsoft Excel and Palisade @Risk was developed. Assumptions simplified some of the complexities of the IVP process. Uncertainties due to incomplete or variable data were addressed by incorporating probability distributions in the model. Model variables included: disease prevalence; the number of donor cows slaughtered for ovaries; the number of oocytes collected, selected and cultured; the BVDV status of ovaries, semen, biological compounds and its behavior in the IVP embryo process. The model used the Monte Carlo method to simulate the IVP process. When co-culture cells derived from donor cows of unknown health status were used for in vitro culture (IVC), the probability of a recipient cow at risk of infection to BVDV per oocyte selected for IVP processing averaged 0.0006. However, when co-culture free from BVDV was used, the probability was 1.2 x 10(-5). Thus, for safe international trade in bovine IVP embryos (i.e. negligible risks of transmission of BVDV), co-culture cells, if used during IVC for producing IVP embryos, should be disease-free.  相似文献   

2.
3.
Data on 944 calves from 2228 in vitro-produced (IVP) bovine preimplantation embryos were compared with data on 2787 AI calves born in the same herds in 1995. Bovine preimplantation embryos were produced in vitro following ovum pick up (OPU) from donor cows and pregnant heifers in an open nucleus breeding program. After 7 d of in vitro culture on a BRL cell monolayer in the presence of 10% FCS, frozen-thawed expanded blastocysts and fresh morulae to expanded blastocysts were transferred into recipient heifers and cows at 119 contracted farms throughout the Netherlands. The pregnancy rate, as confirmed by palpation per rectum between 90 and 150 d after transfer was 43.5% for both fresh and frozen embryos. Data on IVP and AI calves were registered by the farmers. The percentage of calves with a congenital malformation and the percentage of male calves were related to the total number of calves born. Gestation length, birth weight (measured by a balance), perinatal mortality and ease of calving were analyzed in a subdataset (699 IVP and 2543 AI calves, respectively) by a comparative analysis of variance (ANOVA). The ANOVA model included herd, month of calving, sire nested within AI or IVP, parity and breed of the inseminated cow/embryo recipient, sex of calf, type of calf (AI or IVP) and two-way interactions between type of calf and sex, parity and breed. The percentage of calves with congenital malformations was 3.2% and 0.7% for IVP and AI calves, respectively. An increased incidence of hydro-allantois and abnormal spinal cords and limbs was observed in IVP calves. The percentage of male calves was significantly different between IVP and AI, 55.5% and 48.9%, respectively (Chi-square, 1 degree of freedom, P < 0.05). On the average, IVP calves showed a significant increase of birth weight by 10% (4-5 kg), a 3-d longer gestation period, 2.4% more perinatal mortality and a more difficult calving process compared to AI calves (P < 0.05). From these results it is concluded that calves produced by IVP deviate significantly from calves produced by AI.  相似文献   

4.
Timed embryo transfer (TET) using in vitro produced (IVP) embryos without estrus detection can be used to reduce adverse effects of heat stress on fertility. One limitation is the poor survival of IVP embryos after cryopreservation. Objectives of this study were to confirm beneficial effects of TET on pregnancy rate during heat stress as compared to timed artificial insemination (TAI), and to determine if cryopreservation by vitrification could improve survival of IVP embryos transferred to dairy cattle under heat stress conditions. For vitrified embryos (TET-V), a three-step pre-equilibration procedure was used to vitrify excellent and good quality Day 7 IVP Holstein blastocysts. For fresh IVP embryos (TET-F), Holstein oocytes were matured and fertilized; resultant embryos were cultured in modified KSOM for 7 days using the same method as for production of vitrified embryos. Excellent and good quality blastocysts on Day 7 were transported to the cooperating dairy in a portable incubator. Nonpregnant, lactating Holsteins (n = 155) were treated with GnRH (100 microg, i.m., Day 0), followed 7 days later by prostaglandin F2alpha (PGF2alpha, 25 mg, i.m.) and GnRH (100 microg) on Day 9. Cows in the TAI treatment (n = 68) were inseminated the next day (Day 10) with semen from a single bull that also was used to produce embryos. Cows in the other treatments (n = 33 for TET-F; n = 54 for TET-V) received an embryo on Day 17 (i.e. Day 7 after anticipated ovulation and Day 8 after second GnRH treatment). The proportion of cows that responded to synchronization based on plasma progesterone concentrations on Day 10 and Day 17 was 67.7%. Pregnancy rate for all cows on Day 45 was higher (P < 0.05) in the TET-F treatment than for the TAI and TET-V treatments (19.0 +/- 5.0,6.2 +/- 3.6, and 6.5 +/- 4.1%). For cows responding to synchronization, pregnancy rate was also higher (P < 0.05) for TET-F than for other treatments (26.7 +/- 6.4, 5.0 +/- 4.3, and 7.4 +/- 4.7%). In the TET-F treatment group, cows producing more milk had lower (P < 0.05) pregnancy rates than cows producing less milk. In conclusion, ET of fresh IVP embryos can improve pregnancy rate under heat stress conditions, but pregnancy rate following transfer of vitrified embryos was no better than that following TAI.  相似文献   

5.
The main objectives of this investigation were to monitor the birth weight of calves and gestation length following artificial insemination (AI) and transfer of in vivo or in vitro produced Korean native, Hanwoo embryos. Embryos produced in vivo were recovered from uterine flushings of superovulated cows 7 days after AI. Those embryos produced in vitro were co-cultured with cumulus cells for 7-8 days after in vitro fertilization. The birth weights of calves following the transfer of in vitro produced (IVP) embryos were heavier than calves from both of AI- and in vivo-derived embryo transferred calves in both sexes (29.6, 24.1 and 25.2kg, respectively, P<0.05). The IVP calves also had a longer gestation length (293.9, 285.8 and 283.8 days, respectively, P<0.05).  相似文献   

6.
This study was conducted to determine the use of repeated transvaginal ultrasound-guided cumulus oocyte complex (COC) aspiration on COC recovery rate, in vitro embryo production (IVP) and subsequent pregnancy rates in Holstein Friesian (HF) and Aberdeen Angus (AA) cows (Experiment 1), and in pregnant and non-pregnant Holstein Friesian cows (Experiment 2). Cycling, non-pregnant HF (n=17) and AA (n=32) cows with 40-70 days postpartum, between 3 and 5 years of age were used in the Experiment 1. All cows were submitted to repeated transvaginal ultrasound-guided COC aspiration twice a week for 5-7 weeks. Cumulus ooctye complexes (COC) were in vitro matured, fertilized and cultured for 8 days. An overall of 100 and 350 embryos from HF and AA cows respectively were cryopreserved using a conventional slow freezing (Experiment 1). A total of 81 and 285 frozen-thawed embryos from HF and AA cows respectively were transferred to recipient cows. Pregnancy diagnosis was performed at 60 and 150 days of gestation using transrectal ultrasonography. In Experiment 2, cycling non-pregnant (n=9) and pregnant (n=8) HF cows were submitted to repeated ultrasound-guided COC aspiration and COC were in vitro matured, fertilized and cultured as in Experiment 1, except that embryos were cryopreserved but not thawed and transferred as described for Experiment 1. The results of this study indicate that COC recovery rate and blastocyts production are affected by the breed of the donor cow. The quality of blastocyts produced from both breed did not differ in terms of pregnancy and calving rates (Experiment 1). The physiologic state of pregnancy did not affect COC recovery rate and blastocysts production per donor/session (Experiment 2). The use of ultrasound-guided COC aspiration and IVP could be a powerful technique to improve the genetic of beef and dairy cattle managed under pasture-based conditions management in the southern Chile.  相似文献   

7.
The objective of this study was to examine the production efficiency of Japanese Black beef calves after transfer of bovine embryos derived from an in vitro procedure. In vitro-produced (IVP) embryos were obtained from in vitro maturation and fertilization and in vitro development by co-culture with cumulus cells until 7 or 8 days after insemination. In vivo-developed (IVD) embryos from superovulated Japanese Black heifers and cows 7 days after artificial insemination were used as a control group. Bovine embryos were transferred nonsurgically to recipient cows on Day 7 +/- 1 of the estrous cycle. Pregnancy was diagnosed by palpation per rectum at Day 60 to 70 after estrus. Pregnancy, abortion, perinatal accident and birth rates were examined according to the origin of embryos (IVP or IVD), the number of transferred embryos (single or twin) and the storage status (fresh or frozen-thawed). In Experiment 1, production efficiency by twin transfer of fresh IVP embryos was examined. Higher pregnancy rates (52 1% vs 42 9%, P < 0.05) and birth rates (47.0% vs. 33.0%, P < 0.05) were obtained by twin transfer than by single transfer of fresh IVP embryos. Thus, the twin transfer of fresh IVP embryos was effective for production of calves, although the birth rates for single and twin transfers of fresh IVD embryos were still higher (55.5% and 76.1%, P < 0.05). But the abortion and perinatal accident rates for twin transfer of fresh IVP embryos were also significantly greater than those for single and twin transfer of fresh IVD embryos (P < 0.05). In Experiment 2, production efficiency by twin transfer of frozen-thawed IVP embryos was examined. Either single or twin transfer of frozen-thawed IVP embryos resulted in a similar pregnancy rate (41.3% vs. 46.7%, P > 0.05) and birth rate (34.1% vs. 41.1%, P>0.05). Thus, in combination with frozen-thawed IVP embryos, the twin transfer did not enhance production efficiency. In conclusion, Japanese Black beef calves could effectively produce calves by twin transfer to Holstein recipients when using fresh IVP embryos, and by single transfer when using frozen-thawed IVP embryos.  相似文献   

8.
In vitro and in vivo developmental competence of fresh and cryopreserved in vitro produced (IVP) bovine embryos was evaluated up to birth. Three experiments were done. The objective in the first experiment was to develop an optimal vitrification procedure for IVP bovine embryos by determining effects of exposure time (2, 5, 10, 20 min) and temperature (4, 22, 27 degrees C) in cryoprotective agents prior to vitrification on their post-thaw viability. The best combination was used in Experiments 2 and 3. In the second experiment, the importance of post-thaw morphologic selection on pregnancy rates was determined by transferring either selected or unselected single embryos. In the third experiment, pregnancy initiation, maintenance and calving results of vitrified embryos were compared with fresh and conventionally frozen embryos. Fetal losses, birth weights, gestation lengths and frequency of dystocia in the third experiment were monitored. The interaction of exposure time and temperature on both post-thaw re-expansion and hatching rates was significant (P < 0.01). Five minute exposure at 27 degrees C was optimal. In the second experiment, post-thaw selected vitrified embryos had higher pregnancy rates than unselected embryos (P < 0.05). In the third experiment, the pregnancy rate of vitrified embryos did not differ from that of fresh embryos (P > 0.05). However, pregnancy rate of conventionally frozen embryos was lower than that of fresh or vitrified embryos (P < 0.05). Of 92 calves born, 53 were male and 39 were female. Birth weights and dystocia scores of single-born calves did not differ between sexes (P > 0.05). Twin-born calves were lighter than single-born calves (P < 0.05). Overall, the data demonstrate that the transfer of vitrified IVP bovine embryos can result in healthy, apparently normal calves similar to those derived from transfer of fresh and conventionally frozen IVP bovine embryos.  相似文献   

9.
This study examined whether the viability, determined in vitro, of DNA-injected bovine embryos produced in vitro was affected by freezing, and if the frozen embryos developed to term following transfer to recipients. In vitro fertilized zygotes were injected with the pBL1 gene and then co-cultured with mouse embryonic fibroblasts (MEF) in CR1aa medium. Embryos were prepared for cryopreservation by exposure to a 10% (v/v) glycerol solution, loaded into 0.25 ml straws and then frozen by conventional slow freezing. Thawing was by rapid warming in water (37 degrees C) and embryos were rehydrated in PBS diluents of 6%, 3% and 0% (v/v) glycerol supplemented with 0.25 M sucrose and 0.5% (w/v) BSA. In Experiment 1, blastocysts that developed from DNA-injected embryos were individually classified into three morphological groups and three stages of development prior to freezing. DNA-injected blastocysts of excellent quality at freezing showed a higher survival rate (78.8+/-10.6%) after thawing than those of good (60. 9+/-16.4%) or fair (12.5+/-5.9%) quality (P<0.05). Post-thaw survival rate, judged in vitro, increased with more advanced stage of blastocyst development at freezing (early 48.8+/-15.9%, mid 52. 1+/-12.6% and expanded 71.2+/-1.1; P<0.05). In Experiment 2, the frozen/thawed embryos were transferred to recipients to examine in vivo viability. Following transfer of one or two embryos per recipient, pregnancy rates at 60 days of gestation were 13.6% (13/96) for frozen embryos and 26.5% (43/162) for fresh embryos (P<0. 05). Of the 12 live calves born from the frozen/thawed embryos, two males (18.3%) were transgenic. None of the live-born calves derived from fresh embryos exhibited the transgene. One of transgenic bulls did not produce transgenic sperm. Three out of 23 calves (13.0%) produced from cows inseminated with semen of the other bull were transgenic, suggesting that this animal was a germ-line mosaic. These studies indicated that the viability of in vitro produced, DNA-injected bovine blastocysts was affected by freezing and by both the quality and stage of development of the embryo prior to freezing. The generation of transgenic cattle demonstrates that it is feasible to freeze DNA-injected, in vitro produced embryos.  相似文献   

10.
In this study, the cryoprotectant ethylene glycol (EG) was tested for its ability to improve and facilitate the cryopreservation of in vitro produced (IVP) bovine embryos. Embryos were cryopreserved in EG solutions supplemented with either newborn calf serum (NBCS) or polyvinyl alcohol (PVA). To assess EG toxicity, the embryos were equilibrated in EG concentrations from 1.8 to 8.9 M at room temperature for 10 min and then cultured for 72 h on a cumulus cell monolayer. The hatching rate was highest for day 7 blastocysts frozen in 3.6 M EG (98%) and was not different from the control group (85%). The controlled freezing (0.3 degrees C/min to -35 degrees C) of expanded day 7 blastocysts resulted in a hatching rate of 81%, which was similar to that of the nonfrozen controls (76%). Differential staining revealed only very few degenerate blastomeres attributed to freezing and thawing. Upon direct nonsurgical transfer of day 7 expanded blastocysts frozen in 3.6 M EG, a pregnancy rate of 43% was achieved, while the pregnancy rate after transfer of other developmental stages was significantly lower (22% with expanded day 8 blastocysts). When bovine IVP embryos were incubated at room temperature in 7.2 M EG preceded by preequilibration in 3.6 M EG, the hatching rate of day 7 expanded blastocysts reached 93%. Upon vitrification of IVP day 7 and day 8 blastocysts and expanded blastocysts in 7.2 M EG, the latter showed a higher hatching rate (42%) than blastocysts (12%). Overall, PVA as supplement to the basic freezing solution instead of NBCS had deleterious effects on survival after controlled freezing or vitrification. The simple cryopreservation protocol employed in this study and the low toxicity of ethylene glycol highlight the usefulness of this approach for controlled freezing of IVP embryos. However, further experiments are needed to improve the pregnancy rate following embryo transfer and to enhance survival after vitrification.  相似文献   

11.
The present study was conducted 1) to investigate the post-thaw developmental capacity of in vitro mature bovine oocytes (Metaphase II) frozen by 1.6 M of 1,2-propanediol and 2) to confirm the viability of frozen bovine embryos derived from frozen mature oocytes. The cleavage and developmental rates to the blastocyst stage of frozen-thawed mature oocytes were significantly lower (P<0.01) than that of nonfrozen oocytes. When mature oocytes were treated with hyaluronidase, trypsin, or base solution (solution control) before processing to remove the cumulus cells, the developmental rates to the blastocyst stage of frozen-thawed oocytes were 2.8% (5 180 ), 3.1% (9 295 ) and 1.1% (1 89 ), respectively. The viability and developmental capacity of frozen-thawed bovine embryos derived from frozen mature oocytes were not different from those of frozen-thawed bovine embryos derived from nonfrozen mature oocytes (control). Furthermore, nonfrozen and frozen-thawed embryos derived from frozen-thawed mature oocytes were nonsurgically transferred to recipient cows. One of the four and one of the two recipient cows became pregnant, respectively. The results of this study demonstrated the viability of embryos obtained from frozen-thawed bovine oocytes at Metaphase II followed by in vitro fertilization and culture to the blastocyst stage in vitro.  相似文献   

12.
Present study assesses the developmental ability and quality of ovine IVP embryos derived from culture in sequential media G1.3/G2.3. A total of 1474 cumulus-oocyte complexes were matured in M199 supplemented with EGF and FCS for 24h in 5% CO2 in humidified air at 39 degrees C. Oocytes were co-incubated in SOF medium with 1 x 10(6) spermatozoa/ml at the same temperature and gas conditions (Day 0 p.i.). Presumptive zygotes at 20 h p.i. were denuded, washed and placed in culture in SOF (control; n=742) or G1.3 media supplemented with 3mg/ml of BSA (n=732) under mineral oil in a humidified and controlled atmosphere at 39 degrees C. Embryos in the treated group were changed to G2.3 medium on Day 3 of culture. A group of blastocysts in each group were frozen by conventional method (SOF, n=55; G1.3/G2.3, n=48). In vivo embryos (n=72) were recovered at Day 7 from the uterus of progestagen+eCG treated females and they were cultured in defined medium (n=38) or frozen (n=34) directly after recovery. Cleavage rate of IVP embryos recorded at 48 h p.i. was similar for control and treated embryos (49.8 versus 47.5%). There were no significant differences in blastocyst development from the two groups on Day 6 (26.0 versus 25.6%), 7 (42.1 versus 38.6%) or 8 (50.8 versus 43.2%). Blastocyst development rates from total oocytes cultured were comparable (24.1 versus 21.5%). However, the proportion of hatched blastocysts was significantly higher for control embryos (86.6 versus 44.3%, P<0.0001). In addition, embryos cultured in SOF had higher re-expansion rates post-thawing at 24h (38.2 versus 6.2%), 48 h (36.4 versus 4.1%) and 72 h (34.5 versus 4.1%) and hatching rate (32.8 versus 2.0%) than embryos cultured in sequential media (P<0.0001). In vivo embryos showed higher hatching rate (61.7%) than IVP groups (SOF, P<0.01; G1.3/G2.3, P<0.0001) but lower than their fresh cultured counterparts (86.8%; P=0.01). In conclusion, G1.3/G2.3 media supported high developmental rates of embryos in vitro but the quality of the embryos was impaired.  相似文献   

13.
The possible application of the bovine in vitro fertilization technique for economical beef production was evaluated by transferring in vitro produced Belgian Blue embryos to synchronized dairy cows and heifers. In total, 4167 oocytes, collected in the slaughterhouse from double-muscled Belgian Blue cows, were matured in vitro. Frozen-thawed semen from 3 Belgian Blue bulls was used for in vitro fertilization. Zygotes were cultured in B(2) + 10% estrous cow serum together with oviductal cells at 39 degrees C in 5% CO(2) in air. After 7 days, 576 (13.8%) transferable embryos were obtained. One hundred and eighteen of the most advanced embryos were selected for fresh transfer into 90 recipients. Some of the remaining embryos were frozen using conventional methods. After fresh transfer, 50 recipients (55.6%) had elevated progesterone at day 23. Thirty cows (33.3%) calved after a mean gestation length of 282.8+/-6.0 days and produced 25 single births and 5 twins. The sex ratio was 71.4%. The mean birth weight was 45.1+/-8.3 kg. Three calves were of the conventional type instead of double-muscled and 2 calves died of congenital malformations. After transfer of in vitro produced frozen-thawed Belgian Blue embryos into 27 recipients (1 embryo/recipient), 2 bull calves (7.4%) were born. Bovine embryo production by in vitro techniques could form a low-cost supply of beef calves. However, to render it commercially attractive, selection of sires and dams has to be performed with great care.  相似文献   

14.
The objective was to explore the use of sexed sperm and OPU-derived oocytes in an IVP system to produce sex-preselected bubaline embryos. Oocytes were recovered from 20 fertile Murrah and Nili-Ravi buffalo cows by repeated (twice weekly) ultrasound-guided transvaginal ovum pick up (OPU), or by aspiration of abbatoir-derived bubaline ovaries, and subjected to IVF, using frozen-thawed sexed or unsexed bubaline semen. On average, 4.6 oocytes were retrieved per buffalo per session (70.9% were Grades A or B). Following IVF with sexed sperm, oocytes derived from OPU had similar developmental competence as those from abattoir-derived ovaries, in terms of cleavage rate (57.6 vs. 50.4%, P=0.357) and blastocyst development rate (16.0 vs. 23.9%, P=0.237). Furthermore, using frozen-thawed sexed versus unsexed semen did not affect rates of cleavage (50.5 vs. 50.9%, P=0.978) or blastocyst development (15.3 vs. 19.1%, P=0.291) after IVF using OPU-derived oocytes. Of the embryos produced in an OPU-IVP system, 9 of 34 sexed fresh embryos (26.5%) and 5 of 43 sexed frozen embryos (11.6%) transferred to recipients established pregnancies, whereas 7 of 26 unsexed fresh embryos (26.9%) and 6 out of 39 unsexed frozen embryos (15.4%) transferred to recipients established pregnancies. Eleven sex-preselected buffalo calves (10 females and one male) and 10 sexed buffalo calves (six females and four males) were born following embryo transfer. In the present study, OPU, sperm sexing technology, IVP, and embryo transfer, were used to produce sex-preselected buffalo calves. This study provided proof of concept for further research and wider field application of these technologies in buffalo.  相似文献   

15.
In vitro embryo production and exploitation of heterosis are two methods of increasing productivity and accelerating genetic progress in many cattle production systems. However, it is not known if heterosis exists in bovine embryos produced in vitro. Tests for heterosis in in vitro embryo production were conducted in two experiments using reciprocal crosses. In the first, gametes from Bos taurus and Bos indicus were used; in the second, gametes from dairy and beef breeds of Bos taurus were used. In each experiment, both parental groups were used as sperm and oocyte donors, producing crossbred and purebred embryos. Oocytes obtained from abattoir-derived ovaries underwent in vitro maturation and in vitro fertilization with frozen semen. Embryos were cultured to blastocyst stage and observed. In the first experiment, higher (P < 0.05) rates of blastocyst formation were found for Bos taurus both as sires and as dams. Approximately 36% of the purebred Bos taurus oocytes and 21% of the purebred Bos indicus oocytes developed to blastocyst. Crosses averaged 16% resulting in a heterosis estimate of 45%. Ovaries from Bos indicus cows had more harvestable oocytes than did those from Bos taurus cows (P < 0.05). No evidence for heterosis was found for crosses within Bos taurus. Oocytes from beef cows had a higher rate of blastocyst formation than did those from dairy cows (30 vs. 24%, P < 0.05). These seemingly disparate results concerning heterosis were discussed in light of the period of genetic isolation of the parental populations in the two experiments.  相似文献   

16.
Over a 5-year interval, experiments were conducted to determine if Mycobacterium avium ssp. paratuberculosis (Map) is associated with in vivo and in vitro fertilized (IVF) embryos and whether it can be transmitted by embryo transfer. The present studies included: collection of embryos from five asymptomatic, naturally infected donors and transfer to uninfected recipients; collection of oocytes from two naturally infected donors with overt clinical signs; exposure of in vivo and IVF embryos to Map and transfer to uninfected recipients; and the inoculation (transfer) of "clean" IVF embryos to the uterine lumen of infected cows. The presence of Map was confirmed in the uterine horns of all asymptomatic, infected donors. None of the tested embryos, which were not used for embryo transfer, or unfertilized ova (two per batch), were positive for Map, as determined by culture (n = 19) or by PCR (n = 13). However, all in vivo fertilized embryos exposed to Map in vitro (and subsequently sequentially washed) tested positive for Map, by both culture (12 batches) and PCR (15 batches), whereas IVF embryos treated in the same manner tested positive on culture (51%, 18/35 batches) and by PCR (28%, 20/71 batches). Transferring both in vivo embryos and IVF embryos potentially contaminated with Map into 28 recipients resulted in 13 pregnancies and eight calves born without evidence of disease transmission to either the recipients or the offspring over the following 5-year period. In samples collected from one of the clinically infected animals, two of seven (28%) cumulus oocyte complexes (COC) and follicular fluid tested positive by PCR and 10/10 cumulus oocyte complexes on culture for Map. From the second clinically infected cow, three of five batches of IVF embryos (n = 20) were positive on PCR and two of four batches containing unfertilized oocytes and embryos were positive on culture. Only 10% of embryos reached the morula and blastocyst stage 10 days after fertilization. In conclusion, Map is unlikely to be transmitted by embryo transfer when the embryos have been washed as recommended by the International Embryo Transfer Society.  相似文献   

17.
The aim of this study was to evaluate the difference in birth weight and gestation length between Japanese Black calves obtained from transfer of bovine embryos produced in vitro (IVP) and those developed in vivo (IVD). An additional objective was to clarify the sire effect on birth weight and gestation length and to examine the birth rate of heavier calves. Two Japanese Black bulls breed at our experimental station were used as a semen source for production of IVP and IVD embryos. Thirty-eight Japanese Black heifers and cows of various genetic backgrounds were used as embryo donors for IVD embryos. Ovaries for IVP embryos were collected at random at a local slaughterhouse from Japanese Black cattle of various genetic backgrounds. IVP embryos were produced using co-culturing with cumulus cells in 5% CS+TCM 199. Both the IVD and IVP embryos were transferred non-surgically to Holstein recipients on day 7+/-1 of estrous cycle. In this study, the birth weights and gestation lengths of half-sib single calves for bull A and B were analyzed.The numbers of single calves born by transfer of IVP and IVD embryos for bull A and B were 133 and 121, 243 and 465, respectively. The birth weight of the IVP calves was significantly higher (P<0.01) than that of the IVD (bull A: 31.0+/-0.4 kg versus 27.2+/-0.4 kg and bull B: 29.9+/-0.6 kg versus 26.6+/-0.2 kg). Gestation length of the IVP calves for bull A was significantly longer (P<0.01) than that of the IVD (291.9+/-0.9 days versus 283.6+/-0.5 days). However, for bull B, there were no differences in gestation length between the IVP and IVD calves (285.9+/-0.7 days versus 286.2+/-0.3 days). These results clearly indicated that IVP calves had heavier birth weights than IVD calves but that the average gestation length of IVP calves was not always longer than that of IVD calves. Furthermore, the birth rate of heavier calves and the incidence of stillbirth and perinatal mortality up to 48 h post partum in IVP calves (bull A: 11.3%, bull B: 7.8%) were greater (P<0.05) than those in IVD calves from both bulls (bull A: 4.1%, bull B: 3.7%).  相似文献   

18.
Superovulated beef cows and heifers were nonsurgically collected 6 to 8 days post estrus. Commercial production results for 1976 through 1978 were 4979 pregnancies from 7814 embryos transferred for an overall pregnancy rate of 63%. In 1978, 519 superovulation procedures averaged 9.95 +/- 8.4 (S.D.) ova collected, 8.2 +/- 7.55 ova fertilized, 5.96 +/- 5.37 embryos transferred and 3.63 +/- 5.37 pregnancies per procedure. Embryos were transferred to recipient cows in estrus 12 hr before the donor (-12) the same time (0) or 12 hr after the donor (+12). The +12 group had a significantly lower pregnancy rate (61%, P<.05) than the 0 group (67%) or -12 group (66%). Transfer of early morula stage embryos resulted in a lower pregnancy rate (61%, P<.05) than late morula (67%) early blastocyst (67%) or late blastocyst (71%) stage embryos. A higher pregnancy rate (P<.05) was obtained with embryos of good morphological quality (71%) than with embryos graded fair and poor (55%). The pregnancy rate for embryos transferred nonsurgically was lower (44%) than the pregnancy rate for embryos transferred surgically during the same time period (66%). Pregnancy rates for three operators performing the nonsurgical transfers were 48%, 53%, 28%. No difference in pregnancy rate was found between embryos cultured 24 hr in BMOC-3 at 37C (62%) and embryos transferred the same day as collection (60%). Pregnancy rates for cultured embryos transferred to recipient cows in estrus 12, 24 or 36 hr after the donor were 68%, 62% and 60%, respectively. Embryos recovered on days 6, 7 and 8 were frozen in 1.5M DMSO and stored in liquid nitrogen several days to several weeks. Of 68 embryos frozen, 34 were viable post thaw. Upon transfer to recipient cows, the 34 viable embryos produced 23 confirmed pregnancies.  相似文献   

19.
20.
In the present study, we used the sand cat (Felis margarita) as a somatic cell donor to evaluate whether cryopreservation of donor cells alters viability and epigenetic events in donor cells and affects in vitro and in vivo developmental competence of derived embryos. In Experiment 1, flow cytometry analysis revealed that the percentage of necrosis and apoptosis in cells analyzed immediately after freezing/thawing (61 vs. 8.1%, respectively) was higher than that observed in frozen/thawed cells cultured for 18 h (6.9 vs. 3.3%, respectively) or 5 days (38 vs. 2.6%; respectively). The relative acetylation level of H3K9 was lower in frozen/thawed cells (5.4%) compared to that found in cultured cells (60.1%). In Experiment 2, embryos reconstructed with frozen/thawed cells had a lower cleavage rate (85%; day 2) than did embryos reconstructed with cultured cells (95%), while development to the blastocyst stage (day 8) was not affected by cell treatment (17.0% with frozen/thawed cells vs. 16.5% with cultured cells). In Experiment 3, pregnancy rates were similar between both cell treatments (32% with frozen/thawed cells vs. 30% with cultured cells), but the number of embryos that were implanted, and the number of fetuses that developed to term was lower for embryos reconstructed with frozen/thawed cells (1.2 and 0.3%, respectively) than those reconstructed with cultured cells (2.6 and 1.8%, respectively), while the number of fetuses reabsorbed by day 30 was higher (75%) for embryos reconstructed with frozen/thawed cells than those reconstructed with cultured cells (31%). A total of 11 kittens from cultured cells and three kittens from frozen/thawed cells were born between days 60 to 64 of gestation. Most kittens died within a few days after birth, although one kitten did survive for 2 months. In Experiment 4, POU5F1 mRNA expression was detected in 25% of blastocysts derived from frozen/thawed cells, whereas 88 and 87% of blastocysts derived from cultured cells and by in vitro fertilization, respectively, expressed POU5F1. We have shown that cell cryopreservation increased the incidence of necrosis and apoptosis and altered epigenetic events in donor cells. Consequently, the number of embryos that cleaved, implanted, and developed to term-gestation and POU5F1 expression in derived blastocysts indirectly was affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号