共查询到20条相似文献,搜索用时 15 毫秒
1.
David Rekosh 《Journal of virology》1972,9(3):479-487
Two methods were used to determine the genetic map of the poliovirus capsid proteins. The first method uses pactamycin, a drug which selectively inhibits the initiation of protein synthesis and causes a change in the relative amounts of capsid proteins synthesized. This differential effect on each of the capsid proteins is interpreted as indicating the relative distance of each protein from the initiation site of protein synthesis. The second method involves an analysis of coat precursor molecules released from polyribosomes after a series of short pulses of different length terminated by addition of emetine, a drug which stops all protein synthesis almost immediately after its addition. As the pulse length is increased, each of the capsid proteins within the precursor gains radioactivity with different kinetics. From these kinetics, it is possible to determine the gene order of the capsid proteins within the precursor as well as a rate of protein synthesis. Both methods indicate a gene order for the region of the ribonucleic acid coding for the capsid proteins as (5' --> 3') VP 4 - VP 2 - VP 3 - VP 1. 相似文献
2.
Requirements for RNA Replication of a Poliovirus Replicon by Coxsackievirus B3 RNA Polymerase 下载免费PDF全文
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus. 相似文献
3.
Chenglei Li Joseph Che-Yen Wang Milton W. Taylor Adam Zlotnick 《Journal of virology》2012,86(23):13062-13069
The Picornaviridae are a large family of small, spherical RNA viruses that includes numerous pathogens. The picornavirus structural proteins VP0, VP1, and VP3 are believed to first form protomers, which then form 14S particles and subsequently assemble to form empty and RNA-filled particles. 14S particles have long been presumed to be pentamers. However, the structure of the 14S particles, their mechanism of assembly, and the role of empty particles during infection are all unknown. We established an in vitro assembly system for bovine enterovirus (BEV) by using purified baculovirus-expressed proteins. By Rayleigh scattering, we determined that 14S particles are 488 kDa, confirming they are pentamers. Image reconstructions based on negative-stain electron microscopy showed that 14S particles have 5-fold symmetry, and their structures correlate extremely well with the corresponding pentamer from crystal structures of mature BEV. Purified 14S particles readily assemble in response to increasing ionic strength or temperature to form 5.8-MDa 12-pentamer particles, indistinguishable from native empty particles. Surprisingly, empty particles were sufficiently stable that, under physiological conditions, dissociation is unlikely to be a biologically relevant reaction. This suggests that empty particles are not a storage form of 14S particles, at least for bovine enterovirus, but are either a dead-end product or direct precursor into which viral RNA is packaged by as-yet-unidentified machinery. 相似文献
4.
Functional Coupling between Replication and Packaging of Poliovirus Replicon RNA 总被引:2,自引:7,他引:2 下载免费PDF全文
Constance I. Nugent Kyle L. Johnson Peter Sarnow Karla Kirkegaard 《Journal of virology》1999,73(1):427-435
Poliovirus RNA genomes that contained deletions in the capsid-coding regions were synthesized in monkey kidney cells that constitutively expressed T7 RNA polymerase. These replication-competent subgenomic RNAs, or replicons (G. Kaplan and V. R. Racaniello, J. Virol. 62:1687–1696, 1988), were encapsidated in trans by superinfecting polioviruses. When superinfecting poliovirus resistant to the antiviral compound guanidine was used, the RNA replication of the replicon RNAs could be inhibited independently of the RNA replication of the guanidine-resistant helper virus. Inhibiting the replication of the replicon RNA also profoundly inhibited its trans-encapsidation, even though the capsid proteins present in the cells could efficiently encapsidate the helper virus. The observed coupling between RNA replication and RNA packaging could account for the specificity of poliovirus RNA packaging in infected cells and the observed effects of mutations in the coding regions of nonstructural proteins on virion morphogenesis. It is suggested that this coupling results from direct interactions between the RNA replication machinery and the capsid proteins. The coupling of RNA packaging to RNA replication and of RNA replication to translation (J. E. Novak and K. Kirkegaard, Genes Dev. 8:1726–1737, 1994) could serve as mechanisms for late proofreading of poliovirus RNA, allowing only those RNA genomes capable of translating a full complement of functional RNA replication proteins to be propagated. 相似文献
5.
6.
Miguel Angel Sanz Ewelina Welnowska Natalia Redondo Luis Carrasco 《Journal of molecular biology》2010,402(1):101-117
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5′-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2Apro) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2Apro variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2Apro or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2Apro. These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons. 相似文献
7.
8.
Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.As a consequence of the quasispecies population structure, when a virus is subjected to an extreme bottleneck regime, such as successive plaque-to-plaque transfers, it accumulates deleterious mutations that result in fitness loss (reviewed in references 15, 21, and 33). These observations constitute experimental support for the Muller''s ratchet hypothesis, which states that asexual populations of organisms tend to acquire deleterious mutations unless compensatory mechanisms (such as sex or recombination) intervene (39, 41). Several lines of evidence indicate that population bottlenecks are abundant in the life cycle of viruses, both during host-to-host transmission and during intrahost replication (2, 8, 10, 22, 26, 32, 42, 45-48, 52, 53). Most studies have addressed the effects of bottlenecks on the reduction of intramutant spectrum diversity in relation to virus survival and persistence, effects on fitness, or as promoters of stochastic processes and drift in viral evolution. Yet the possible biological effects of specific mutations fixed as a result of bottleneck events remain largely unexplored.Experimental designs consisting of many successive plaque-to-plaque transfers, without intervening large-population passages, are ideal for obtaining viral clones that are debilitated by the occurrence of mutations because negative selection is highly attenuated (15, 21, 33). The deleterious nature of some mutations that become fixed in viral genomes subjected to repeated bottlenecks can be inferred from their position in the viral genome and then confirmed experimentally. For example, an internal tract of four oligoadenylate residues that precede the second functional AUG initiation codon of foot-and-mouth disease virus (FMDV) was invariant among natural isolates of the virus or among populations subjected to large-population passages. Yet this oligoadenylate tract was extended in several clones subjected to plaque-to-plaque transfers (17). This lesion, unique to clones that had undergone multiple bottleneck transfers, was associated with a decrease in replicative fitness (4, 17), and some of the clones displayed reduced levels of Lb, the form of the leader proteinase L synthesized from the second functional AUG initiation codon (17). However, the effect of other mutations that accumulate as a result of bottleneck transfers cannot be easily anticipated. Some mutations will likely be neutral while others are deleterious, and there is experimental and in silico evidence that a few mutations are advantageous or compensatory, thereby allowing the virus to survive despite continuous accumulation of mutations (21, 28).Nonsynonymous mutations in coding regions may perturb the structure and function of viral proteins. Despite evidence that such mutations can affect viral fitness, in very few cases the biochemical effect of a lesion associated with the operation of Muller''s ratchet has been identified. Here, we report that the accumulation of mutations in FMDV subjected to plaque-to-plaque passages results in a gradual increase in the thermosensitivity of infectious progeny production, with a several-logarithm decrease in progeny production at 42°C relative to 37°C at plaque transfer 230. Part of the thermosensitivity at early transfers could be traced to a single amino acid substitution, M54I, located at the B-C loop of capsid protein VP1. This loop corresponds to antigenic site 3 of FMDV (30, 36). We show that the M54I mutation decreases the proteolytic cleavage between capsid proteins VP3 and VP1 and that the impairment is manifested more severely at high temperatures. This cleavage is catalyzed by proteinase 3Cpro (31, 50, 51, 56), which does not show any substitution in the mutant FMDV clone that harbored the M54I mutation in VP1. Thus, a distant amino acid located at an antigenic site of a virus can affect a protein processing step catalyzed by wild-type 3Cpro. We discuss possible models to explain the link between two disparate phenotypic traits, antigenicity and protein processing, in the life cycle of a virus. 相似文献
9.
Xiaodong Yan Zeyun Yu Ping Zhang Heather A. Holdaway Chandrajit Bajaj Michael G. Rossmann Timothy S. Baker 《Journal of molecular biology》2009,385(4):1287-14842
Chilo iridescent virus (CIV) is a large (∼ 1850 Å diameter) insect virus with an icosahedral, T = 147 capsid, a double-stranded DNA (dsDNA) genome, and an internal lipid membrane. The structure of CIV was determined to 13 Å resolution by means of cryoelectron microscopy (cryoEM) and three-dimensional image reconstruction. A homology model of P50, the CIV major capsid protein (MCP), was built based on its amino acid sequence and the structure of the homologous Paramecium bursaria chlorella virus 1 Vp54 MCP. This model was fitted into the cryoEM density for each of the 25 trimeric CIV capsomers per icosahedral asymmetric unit. A difference map, in which the fitted CIV MCP capsomers were subtracted from the CIV cryoEM reconstruction, showed that there are at least three different types of minor capsid proteins associated with the capsomers outside the lipid membrane. “Finger” proteins are situated at many, but not all, of the spaces between three adjacent capsomers within each trisymmetron, and “zip” proteins are situated between sets of three adjacent capsomers at the boundary between neighboring trisymmetrons and pentasymmetrons. Based on the results of segmentation and density correlations, there are at least eight finger proteins and three dimeric and two monomeric zip proteins in one asymmetric unit of the CIV capsid. These minor proteins appear to stabilize the virus by acting as intercapsomer cross-links. One transmembrane “anchor” protein per icosahedral asymmetric unit, which extends from beneath one of the capsomers in the pentasymmetron to the internal leaflet of the lipid membrane, may provide additional stabilization for the capsid. These results are consistent with the observations for other large, icosahedral dsDNA viruses that also utilize minor capsid proteins for stabilization and for determining their assembly. 相似文献
10.
11.
12.
13.
Reaction mixtures containing cytoplasmic extracts and ribosomal fractions prepared from KB cells infected with type 5 adenovirus were able to carry out incorporation of amino acids into protein. The in vitro product included proteins which reacted specifically with antisera to adenovirus capsid proteins; in control experiments with extracts from uninfected cells, no reactions with the antisera were found. The viral proteins were synthesized in vitro on small polyribosomes, were released from them, and significant numbers of the free polypeptides were assembled in vitro into multimeric adenovirus capsid structures. 相似文献
14.
The host restriction factors TRIM5α and TRIMCyp potently inhibit retrovirus infection by binding to the incoming retrovirus capsid. TRIM5 proteins are dimeric, and their association with the viral capsid appears to be enhanced by avidity effects owing to formation of higher-order oligomeric complexes. We examined the stoichiometric requirement for TRIM5 functional recognition by quantifying the efficiencies of restriction of HIV-1 and murine leukemia virus (MLV) particles containing various proportions of restriction-sensitive and -insensitive CA subunits. Both TRIMCyp and TRIM5α inhibited infection of retrovirus particles containing as little as 25% of the restriction-sensitive CA protein. Accordingly, we also observed efficient binding of TRIMCyp in vitro to capsid assemblies containing as little as one-fourth wild-type CA protein. Paradoxically, the ability of HIV-1 particles to abrogate TRIMCyp restriction in trans was more strongly dependent on the fraction of wild-type CA than was restriction of infection. Collectively, our results indicate that TRIM5 restriction factors bind to retroviral capsids in a highly cooperative manner and suggest that TRIM5 can engage a capsid lattice containing a minimum of three or fewer recognizable subunits per hexamer. Our study supports a model in which localized binding of TRIM5 to the viral capsid nucleates rapid polymerization of a TRIM5 lattice on the capsid surface. 相似文献
15.
Effect of Pactamycin on Synthesis of Poliovirus Proteins: a Method for Genetic Mapping 总被引:9,自引:23,他引:9 下载免费PDF全文
We have studied the effect of the drug pactamycin on protein synthesis in poliovirus-infected HeLa cells. At a concentration which primarily inhibits initiation of protein synthesis, the spectrum of poliovirus proteins synthesized is markedly changed. The amount of NCVP 1, the capsid precursor, is greatly reduced relative to NCVP 2 and the amount of NCVP X is slightly reduced. Since it is believed that there is only one major site for the initiation of protein synthesis on the poliovirus genome, we interpret this differential effect on the poliovirus proteins to be an indication of their relative distance from the initiation site. On this basis, we propose a gene order for the poliovirus genome (5' --> 3') of NCVP 1, NCVP X, NCVP 2. 相似文献
16.
Minou Bina Shi-Chung Ng Veronica Blasquez 《Journal of biomolecular structure & dynamics》2013,31(3):689-704
Abstract It has been established that both in virions and in infected cells, the cellular core histones fold the SV40 DNA into nucleosomes to form the SV40 chromosome or chromatin. We and others have begun to examine how the capsid proteins assemble the SV40 chromatin into virions and to investigate whether these proteins interact with the encapsidated chromatin. To follow the pathway of virus assembly, we have analyzed the nucleoproteins which accumulate in cells infected with the SV40 mutants temperature-sensitive in assembly: tsC, tsBC, and tsB. (The temperature-sensitivity of these mutants result from alterations in the amino acid sequence of the major capsid protein VP1). We have found that mutants belonging to the same class accumulate similar types of nucleoproteins at the nonpermissive temperature (40°C) and thus, share characteristics in common. For example, the tsC mutants accumulate only the 75 S chromatin. Both tsBC and tsB mutants produce in addition to chromatin, nucleoprotein complexes which sediment broadly from 100–160 S and contain all the three capsid proteins VP1, VP2, and VP3. These nucleoproteins can be distinguished morphologically, however. Under the electron microscope, the tsBC 100–160 S nucleoproteins appear as chromatin to which a small cluster of the capsid proteins is attached; the tsB nucleoproteins appear as partially assembled virions. In addition, we find that the 220 S virions are assembled in cells coinfected with tsB and tsC mutants at 40°C, in agreement with genetic analysis. Our observations favor the hypothesis that the VP1 protein contains three discrete domains. We speculate that each domain may play a specific function in SV40 assembly. To gain more insight into VP1-VP1 interactions, we have examined the nucleoproteins which result from treatment of the mature wild-type virions with increasing concentrations of the reducing agent DTT. In the presence of as low a concentration of DTT as 0.1 mM, the virion shell can be penetrated by micrococcal nuclease, which then cleaves the viral DNA. This result indicates that some of the disulfide bonds bridging the VP1 proteins are on the virion surface. 相似文献
17.
18.
The Poliovirus Empty Capsid Specifically Recognizes the Poliovirus Receptor and Undergoes Some, but Not All, of the Transitions Associated with Cell Entry 下载免费PDF全文
Experimental results presented here demonstrate that the poliovirus empty capsid binds with saturable character to poliovirus-susceptible cells, binds preferentially to susceptible cells, and competes with mature virus for binding sites on cells. Hence, induced changes in the structure and/or stability of the particle by RNA encapsidation and virus maturation are not necessary for recognition by receptor. In mature virus, heat-induced rearrangements mimic those induced by receptor at physiological temperatures in several important respects, namely, expulsion of VP4 and externalization of the VP1 N-terminal arm. It is shown here that in the empty capsid the VP1 N-terminal arm is externalized but the VP4 portion of VP0 is not. Thus, these two hallmark rearrangements associated with cell entry can be uncoupled. 相似文献
19.
20.
Cara C. Burns Ray Campagnoli Jing Shaw Annelet Vincent Jaume Jorba Olen Kew 《Journal of virology》2009,83(19):9957-9969
Replicative fitness of poliovirus can be modulated systematically by replacement of preferred capsid region codons with synonymous unpreferred codons. To determine the key genetic contributors to fitness reduction, we introduced different sets of synonymous codons into the capsid coding region of an infectious clone derived from the type 2 prototype strain MEF-1. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased sharply with increased frequencies of the dinucleotides CpG (suppressed in higher eukaryotes and most RNA viruses) and UpA (suppressed nearly universally). Replacement of MEF-1 capsid codons with the corresponding codons from another type 2 prototype strain (Lansing), a randomization of MEF-1 synonymous codons, increased the %G+C without increasing CpG, and reductions in the effective number of codons used had much smaller individual effects on fitness. Poliovirus fitness was reduced to the threshold of viability when CpG and UpA dinucleotides were saturated within and across synonymous codons of a capsid region interval representing only ∼9% of the total genome. Codon replacements were associated with moderate decreases in total virion production but large decreases in the specific infectivities of intact poliovirions and viral RNAs. Replication of codon replacement viruses, but not MEF-1, was temperature sensitive at 39.5°C. Synthesis and processing of viral intracellular proteins were largely unaltered in most codon replacement constructs. Replacement of natural codons with synonymous codons with increased frequencies of CpG and UpA dinucleotides may offer a general approach to the development of attenuated vaccines with well-defined antigenicities and very high genetic stabilities.Diversification of genomic sequences is constrained in all biological systems. At the level of primary sequences, the range of variability in coding regions is restricted by the codon usage bias (CUB), whereby a subset of synonymous codons are preferentially used in translation (24, 53, 69). The intensity of the CUB and the specific set of preferred codons vary widely across biological systems (39). Intertwined with the CUB is the suppression of the dinucleotides CpG and TpA (or UpA in RNA viruses) in the genomes of higher eukaryotes (4, 7, 26, 61) and many of their RNA viruses and small DNA viruses (28, 49). Variation in the primary sequences of RNA virus genomes is further constrained by requirements to maintain essential secondary and higher-order structures (42, 54, 68).We previously described the modulation of the replicative fitness of the Sabin type 2 oral poliovirus vaccine (OPV) strain (Sabin 2) by systematically changing the CUB in the capsid region, replacing the naturally occurring preferred codons with an unpreferred synonymous codon (isocodon) for each of nine amino acids (8). We called our approach “codon deoptimization” to contrast with the process of codon optimization, which is frequently used to maximize expression of foreign proteins in heterologous host systems (1, 27, 70). Apart from its potential application to development of improved poliovirus vaccines (8, 13, 38), experimental investigations of codon deoptimization directly test the relationships between replicative fitness, the extent of CUB, and the intensity of CpG and UpA suppression. As a model system for such studies, polioviruses offer several favorable properties, including (i) intrinsically high error rates for the poliovirus RNA-dependent RNA polymerase (2, 14, 16, 65), (ii) very high evolution rates (25), (iii) short generation times (8 to 10 h) and large progeny yields of prototype polioviruses, and (iv) well-developed reverse genetics (9).In this report, we extend our codon deoptimization strategy to the type 2 wild poliovirus prototype strain MEF-1. As before, we restricted our replacement of synonymous codons to the capsid coding region, which encodes two of the defining properties of polioviruses, namely, (i) the capacity to bind the CD155 poliovirus receptor (PVR) (23) and (ii) the poliovirus type-specific neutralizing antigenic sites (35). No changes were made to the flanking 5′-untranslated region and noncapsid region sequences, as they contain essential secondary structural elements (42, 54, 68) and are frequently exchanged out by recombination during circulation of poliovirus in human populations (20, 30, 32). MEF-1 was selected because of its high fitness level (hence, its use as the type 2 component of the inactivated poliovirus vaccine [IPV]) and because of its neurovirulence for humans (15), for nontransgenic mice (52), and for transgenic mice expressing the PVR (71). Type 2 polioviruses were selected first for study because the Sabin 2 OPV strain is most frequently associated with vaccine-associated paralytic poliomyelitis in contacts of OPV recipients (57, 59), with prolonged excretion of immunodeficiency-associated vaccine-derived polioviruses (VDPVs) (10, 31, 60), and with the emergence of circulating VDPVs in areas of low OPV coverage (10, 31).Consistent with our previous findings, the fitness of MEF-1 decreased in proportion to the total number of synonymous replacement codons. Fitness was reduced most efficiently by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous codons. Saturation of CpG and UpA in a small capsid interval (representing only ∼9% of the genome) reduced fitness to the threshold of viability, even though the MEF-1 amino acid sequence was unaltered. The most prominent biological effect of deoptimization of codon usage and the large-scale incorporation of CpG and UpA was a sharp reduction in virus specific infectivities. In contrast, translation and processing of viral proteins and yields of intact virus particles with native antigenicities were reduced only moderately by increased CpG and UpA frequencies. Codon deoptimization with concurrent increases in the frequencies of CpG and/or UpA dinucleotides in RNA virus genomes may provide a novel general approach to the rational design of improved attenuated vaccines with predictable and stable genetic properties. 相似文献