首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
Abstract. 1. Recent studies have demonstrated the existence of positive density dependence in the survival and development of Drosophila (the so‐called Allee effect); however the underlying mechanisms of such Allee effects have remained elusive. Competition with filamentous fungi have often been suggested to be involved in causing high mortality at low larval density, but it has not yet been explicitly tested if the well known spatial aggregation of insect eggs yields a fitness benefit for the developing larvae in the presence of noxious moulds. 2. Using Drosophila melanogaster, the present study tested whether larval survival is greater in aggregations when confronted with various combinations of three representative mould species (Aspergillus, Alternaria, and Penicillium) and a head start for fungal development. 3. High rates of fungal‐dependent mortality and significant positive density‐dependent larval survival (i.e. Allee effects) were observed when larvae were confronted with food resources containing established colonies of Aspergillus or Alternaria. Neither the simultaneous transfer of Aspergillus or Alternaria spores with larvae to food patches nor food infections with Penicillium affected insect larval development. 4. Significant correlations between mould growth and larval survival could be identified, although the patterns that emerged were shown to be inconsistent when the effects were compared between fungal species and fungal priority. Because mould growth only partly explained larval survival, the influence of other fungal‐borne factors, e.g. mycotoxins, needs to be elucidated in order to understand the mechanistic basis of insect–mould interactions. 5. These results are the first to argue convincingly for moulds being involved in mediating Allee effects for insects on ephemeral resources; however they also demonstrate an unexpected diversity in insect–mould interactions. Considering this diversity may be important in understanding insect spatial ecology.  相似文献   

2.
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.  相似文献   

3.
Entomophthora thripidum is an obligate biotrophic insect pathogenic fungus that grows as protoplasts within the hemocoel of thrips. Prior to penetration through the insect cuticle and spore formation at the insect surface the protoplasts switch to hyphal growth. In vitro, the differentiation to hyphal growth was a prerequisite for the subsequent formation of infectious spores and was detected 10-20 days after inoculation. E. thripidum secreted a factor that autoinduced the differentiation to hyphal growth. The discovery of this activity inducing hyphal growth made possible the reliable production of spores, the infection of host insects and the consecutive re-isolation of the fungus from the infected insects.  相似文献   

4.
Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope''s gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species‐specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species‐specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.  相似文献   

5.
The production of Nosema algerae spores was examined in Pieris brassicae. Spore replication in the insect host followed a logistic pattern of development. The factors studied which affected spore production and replication were dose level (5 × 102, 5 × 103, and 5 × 104 spores per insect), larval instar (fourth and fifth), and cool pretreatment of the insects at 20°C prior to inoculation compared with a constant temperature of 26°C. A three-way analysis showed the interactions between these factors. The logistic pattern of spore replication was used to explain the results.  相似文献   

6.
三株球孢白僵菌侵染烟粉虱的比较生长动力学及其毒力   总被引:1,自引:0,他引:1  
同一种虫生真菌的不同菌株对于特定昆虫宿主的毒力可存在显著差异,真菌在昆虫体内的生长能力不同可能是引起这种差异的原因之一。为了探讨真菌在宿主体内的生长动力学与其毒力的关系,本研究用生测法测定了3株球孢白僵菌(GZGY-1-3、SCWJ-2、WLMQ-20)在高剂量(1×108孢子/mL)和低剂量(1×106孢子/mL)下对烟粉虱4龄若虫的毒力,用实时荧光定量PCR技术对真菌在宿主体内的拷贝数进行了定量,用荧光显微方法观察了白僵菌侵染烟粉虱的过程。生物测定实验结果显示:不论在高剂量还是低剂量下,菌株GZGY-1-3杀死烟粉虱所需的时间最短(在高剂量和低剂量下LT50分别为2.29d和6.10d),其次是菌株SCWJ-2(LT50分别为3.03d和7.38d),菌株WLMQ-20所需时间最长(LT50分别为4.13d和9.39d)。对于同一菌株,其高剂量下的毒力显著高于低剂量下的毒力。实时荧光定量PCR实验显示,接触高剂量孢子后烟粉虱获得的孢子数远远高于接触低剂量时的孢子数。接种后,每一菌株和每一剂量下的真菌生长都表现出一个相似的模式。在接种24h后,真菌细胞数量显著下降,在接种后24–48h之间是一个简短的恢复阶段,接种48–72h后是真菌的细胞数略有净增长的稳定时期,在宿主死亡前后的阶段,真菌数量急剧增加,与接种后最初24h相比高了近1 000倍。然而,尽管它们的生长模式相似,但是却存在着量上的差异,由致病性强、剂量高的菌株侵染的昆虫体内的最终真菌菌体数高。荧光显微技术观察到的白僵菌对烟粉虱的侵染过程证实了定量PCR的结果。这些结果说明菌株间毒力的差异在一定程度上是由真菌生长动力学的量化差异所决定的。  相似文献   

7.
Various instars of Choristoneura occidentalis were fed with a range of doses of Nosema fumiferanae and reared at 20, 24 and 28 degrees C to determine the influence of temperature and dose on the time to spore egestion and the number of spores egested in the frass. When larvae were fed in the third stadium, as few as 10(2) spores per larva initiated infection, and both onset of spore egestion and the number of spores egested were affected by a complex relationship between temperature and inoculation dose. Onset of spore egestion varied from 11 to 15 days postinoculation. At 20 degrees C, the onset was delayed and spore production decreased with increasing inoculation dose whereas at higher temperatures spores were first egested at the lowest dose and spore production increased with dose. When larvae were fed spores in the fifth and sixth stadium, no spores were egested because pupation occurred before completion of the incubation period. To assess the effect of temperature on horizontal transmission, Choristoneura fumiferana larvae fed with 10(4) N. fumiferanae spores per larva were reared with uninfected larvae at 15, 20 and 25 degrees C. At 15 degrees C, we observed the highest degree of horizontal transmission, defined by the largest change in N. fumiferanae prevalence, even though the density of spores available for horizontal transmission was the lowest. Infected adults eclosed later than uninfected adults and the time to eclosion was also dependent on sex and temperature. We relate our experimental findings to consequences for horizontal and vertical transmission of N. fumiferanae in spruce budworm populations.  相似文献   

8.
Spores from axenic cultures of Smittium spp., isolated from various geographical locations and from different dipteran hosts (mosquito, black fly, and chironomid larvae), were fed to mosquito larvae (Aedes aegypti). We were able to demonstrate some host specificity at the insect family level, but no significant differences in infectivity by isolates from different geographical areas. Spore germination and thallus attachment were observed in the host hindgut within 1.5 hr post spore ingestion. Preliminary studies indicate that S. culisetae has little effect on A. aegypti larvae when they are reared under conditions that promote pupation within 5–6 days. However, ingestion of large numbers of spores by 1st instar larvae growing under suboptimal nutritional conditions may produce fungal growth detrimental to larvae.  相似文献   

9.
Competitive interactions between organisms from distantly related phylogenetical branches have been suggested as being one of the most pervasive forms of interspecific competition. However, so-called inter-kingdom competition has rarely been the focus of ecological and evolutionary studies. Thus, a relatively novel hypothesis has been proposed on the basis that saprophagous insects might intensively compete with filamentous fungi for ephemeral resources (e.g. decaying plant tissue). Consideration that life history traits (e.g. developmental time) are adaptive in determining developmental success in the presence of con- or hetero-specifics competitors implies that these traits have been progressively established by natural selection. Because a similar scenario may apply to antagonistic interactions between saprophagous insects and filamentous fungi, one can expect the existence of heritable variation in developmental success when insect larvae are forced to grow in the presence of noxious mould. Therefore, this study aimed at discovering whether a local population of Drosophila melanogaster indeed harbours genetic variation in developmental success in the presence of the mould Aspergillus niger. By using the isofemale line technique, single larvae forced to feed on fungal infected or uninfected substrate were analysed for variation in survival probability to the adult stage, developmental time and body size of emerged adults. I found genetic variation in survival probability in fungal infected substrates but not in uninfected larval food sources. Mean developmental time and body size varied significantly among isofemale lines in both types of larval environment. Survival was negatively correlated with developmental time on fungal infected substrate, but variation in developmental time on fungal-free substrates was not correlated with survival on fungal infected food patches. Within-trait correlation between fungal infected and uninfected substrates was surprisingly weak, and developmental time was not correlated with body size. The results of this study demonstrate (a) the existence of genetic variation for larval developmental success in the presence of A. niger in a Drosophila population, and (b) heritability of important insect life history traits differed as a function of the larval environment (fungal infected or uninfected feeding substrate). I discuss models that might explain heritability differences and the evolutionary consequences of these results.  相似文献   

10.
Drosophilid flies breeding on ephemeral resource patches (e.g., decaying fruits) are assumed to transfer yeasts to their oviposition sites, presumably in order to positively affect offspring development. We tested this hypothesis with Drosophila subobscura Collin (Diptera: Drosophilidae) by manipulating their nutritional (yeast‐fed vs. non‐yeast‐fed) and reproductive status (mated vs. non‐mated). Flies were then released into vials containing decaying fruits (either sloes, crab apples, or Syrian plums). After a constant residence time in the vials, the flies were removed, 16 first‐instar larvae were transferred to the fruits and their survival probability to the adult stage was recorded. Whereas previous exposure of the larval substrate to yeast‐fed males and virgin females (yeast‐fed and non‐yeast‐fed) had no effect on survivorship, exposure to yeast‐fed and mated females that deposited eggs on the fruits (subsequently removed) led to a significant increase in the survival probability of the transferred larvae to the adult stage. Although the exact mechanism of yeast transmission remains to be determined, we suggest an active inoculation of the breeding substrates with yeast by ovipositing females. In agreement with previous studies, we found a negative effect of mould growth on larval survival, which, however, depended on the fruit type. We discuss various scenarios of yeast involvement in benefits to the insect larvae and suggest that insect–mould interactions should be examined in detail in order to better understand the behavioural and life‐history traits of insects that depend on ephemeral resources.  相似文献   

11.
Rohlfs M  Hoffmeister TS 《Oecologia》2004,140(4):654-661
Although an increase in competition is a common cost associated with intraspecific crowding, spatial aggregation across food-limited resource patches is a widespread phenomenon in many insect communities. Because intraspecific aggregation of competing insect larvae across, e.g. fruits, dung, mushrooms etc., is an important means by which many species can coexist (aggregation model of species coexistence), there is a strong need to explore the mechanisms that contribute to the maintenance of this kind of spatial resource exploitation. In the present study, by using Drosophila-parasitoid interactions as a model system, we tested the hypothesis whether intraspecific aggregation reflects an adaptive response to natural enemies. Most of the studies that have hitherto been carried out on Drosophila-parasitoid interactions used an almost two-dimensional artificial host environment, where host larvae could not escape from parasitoid attacks, and have demonstrated positive density-dependent parasitism risk. To test whether these studies captured the essence of such interactions, we used natural breeding substrates (decaying fruits). In a first step, we analysed the parasitism risk of Drosophila larvae on a three-dimensional substrate in natural fly communities in the field, and found that the risk of parasitism decreased with increasing host larval density (inverse density dependence). In a second step, we analysed the parasitism risk of Drosophila subobscura larvae on three breeding substrate types exposed to the larval parasitoids Asobara tabida and Leptopilina heterotoma. We found direct density-dependent parasitism on decaying sloes, inverse density dependence on plums, and a hump-shaped relationship between fly larval density and parasitism risk on crab apples. On crab apples and plums, fly larvae benefited from a density-dependent refuge against the parasitoids. While the proportion of larvae feeding within the fruit tissues increased with larval density, larvae within the fruit tissues were increasingly less likely to become victims of parasitoids than those exposed at the fruit surface. This suggests a facilitating effect of group-feeding larvae on reaching the spatial refuge. We conclude that spatial aggregation in Drosophila communities can at least in part be explained as a predator avoidance strategy, whereby natural enemies act as selective agents maintaining spatial patterns of resource utilisation in their host communities.  相似文献   

12.
The larvicidal activity of Bacillus thuringiensis var. israelensis against mosquitoes and the blackfly is included in parasporal crystalline bodies which are produced during sporulation. Following ingestion, the crystals are solubilized in the larval midgut and induce death within a short time; the spores germinate in the dead larvae and complete a growth cycle. The fate of the spores in surviving live larvae was elucidated by using a nonlarvicidal B. thuringiensis var. israelensis mutant. When introduced as the only food source, spores of this mutant support development to the adult stage of newly hatched Aedes aegypti larvae at a rate directly related to spore concentration. The conclusion that spores of B. thuringiensis var. israelensis are digested in the larval gut was substantiated by following the incorporation of [35S]methionine-labeled spores into larval tissues.  相似文献   

13.
Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.  相似文献   

14.
Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen.  相似文献   

15.
Abstract 1. Aggregation pheromones can evolve when individuals benefit from clustering. Such a situation can arise with an Allee effect, i.e. a positive relationship between individual fitness and density of conspecifics. Aggregation pheromone in Drosophila induces aggregated oviposition. The aim of the work reported here was to identify an Allee effect in the larval resource exploitation by Drosophila melanogaster, which could explain the evolution of aggregation pheromone in this species. 2. It is hypothesised that an Allee effect in D. melanogaster larvae arises from an increased efficiency of a group of larvae to temper fungal growth on their feeding substrate. To test this hypothesis, standard apple substrates were infested with specified numbers of larvae, and their survival and development were monitored. A potential beneficial effect of the presence of adult flies was also investigated by incubating a varying number of adults on the substrate before introducing the larvae. Adults inoculate substrates with yeast, on which the larvae feed. 3. Fungal growth was related negatively to larval survival and the size of the emerging flies. Although the fungal growth on the substrate was largely reduced at increased larval densities, the measurements of fitness components indicated no Allee effect between larval densities and larval fitness, but rather indicated larval competition. 4. In contrast, increased adult densities on the substrates prior to larval development yielded higher survival of the larvae, larger emerging flies, and also reduced fungal growth on the substrates. Hence, adults enhanced the quality of the larval substrate and significant benefits of aggregated oviposition in fruit flies were shown. Experiments with synthetic pheromone indicated that the aggregation pheromone itself did not contribute directly to the quality of the larval resource. 5. The interaction among adults, micro‐organisms, and larval growth is discussed in relation to the consequences for total fitness.  相似文献   

16.
《Fungal biology》2022,126(10):648-657
We evaluated the virulence of Beauveria bassiana and Metarhizium isolates from soil collected across different vegetation types in Queensland, against chlorantraniliprole-resistant and insecticide-susceptible diamondback moth (DBM) larvae. Host insecticide resistance status had no effect on susceptibility to the pathogens when conidia were topically applied to larvae in the laboratory, and one B. bassiana isolate was significantly more virulent to larvae than the others (seven days after inoculation). The influence of temperature (15, 20, 25 or 30 °C): (i) at the point of host inoculation with conidia and (ii) when the pathogens had already initiated infection and were proliferating in the host haemocoel, was determined experimentally for its influence on virulence, disease progression, and sporulation. Temperature at inoculation had a greater effect on host insect mortality than it did when the fungus was already proliferating in the host haemocoel. The rearing temperature of hosts prior to inoculation had a greater effect on host susceptibility to disease than starvation of the larvae at the time of inoculation. Our results also show that each fungal isolate has its own temperature relations and that these can vary considerably across isolates, and at different points in the pathogen life cycle (germination and cuticular penetration versus growth in the host haemocoel). Temperature also had an idiosyncratic effect, across isolates and across the variables typically used to assess the potential of fungal entomopathogens as biological control agents (time to death, mortality and sporulation rates). This study demonstrates that in addition to pathogenicity and virulence, the temperature relationships of each fungal isolate when infecting insects needs to be taken into account if we are to understand their ecology and use them effectively in pest management.  相似文献   

17.
郑宏 《昆虫学报》1950,63(10):1194-1200
【目的】橙带蓝尺蛾Milionia basalis近年来在我国南方地区严重危害罗汉松Podocarpusmacrophyllus和竹柏Podocarpus nagi,扩散蔓延速度快,造成了很大的损失。本研究旨在评估金龟子绿僵菌Metarhizium anisopliae MaFZ-13菌株对橙带蓝尺蛾幼虫的致病力,探寻橙带蓝尺蛾生物防治新资源。【方法】通过绿僵菌MaFZ-13不同浓度(1.0×105~1.0×109孢子/mL)孢子悬浮液接种橙带蓝尺蛾幼虫,运用时间-剂量-死亡率(TDM)模型对生物测定结果进行分析,同时通过林间喷施1.0×108孢子/mL绿僵菌孢子悬浮液进行林间防治效果试验。【结果】橙带蓝尺蛾幼虫累计死亡率随着绿僵菌MaFZ-13孢子悬浮液孢子浓度的增加和接种时间的延长而增大。接种1.0×109孢子/mL孢子悬浮液8 d后以及接种1.0×108孢子/mL孢子悬浮液10 d后,幼虫死亡率均达到100%;接种1.0×107孢子/mL孢子悬浮液15 d后幼虫死亡率为95.6%。应用TDM模型对生测数据进行分析,结果表明所建模型通过Hosmer-Lemeshow拟合异质性检验,并由模型估算出了该菌株对橙带蓝尺蛾幼虫的致死剂量和致死时间。绿僵菌MaFZ-13菌株接种4, 5, 6和7 d后的半致死剂量(LC50)对数估计值分别为7.99, 7.12, 6.46和5.83。以1.0×107, 1.0×108和1.0×109孢子/mL的孢子浓度接种时,绿僵菌MaFZ-13菌株对橙带蓝尺蛾幼虫的LT50值分别为5.19,3.99和2.81 d。林间用1.0×108孢子/mL绿僵菌孢子悬浮液喷洒9 d后橙带蓝尺蛾幼虫死亡率可达到85.8%,防治效果为85.05%。【结论】绿僵菌MaFZ-13对橙带蓝尺蛾幼虫具有较强的致病力,林间防治效果良好,具有较好的应用潜力。  相似文献   

18.
The Mediterranean fruit fly [Ceratitis capitata Wiedemann (Diptera: Tephritidae)], or medfly, is mass produced in many facilities throughout the world to supply sterile flies for sterile insect technique programs. Production of sterile males requires large amounts of larval and adult diets. Larval diets comprise the largest economic burdens in the mass production of sterile flies, and are one of the main areas where production costs could be reduced without affecting quality and efficacy. The present study investigated the effect of manipulating diet constituents on larval development and performance. Medfly larvae were reared on diets differing in the proportions of brewer's yeast and sucrose. We studied the effect of such diets on the ability of pupating larvae to accumulate protein and lipids, and on other developmental indicators. Except for diets with a very low proportion of brewer's yeast (e.g., 4%), pupation and adult emergence rates were in general high and satisfactory. The ability of pupating larvae to accumulate lipid reserves and proteins was significantly affected by the sucrose and yeast in the diet, and by the proportion of protein to carbohydrates (P/C). In contrast to previous nutritional studies conducted with other insects, low P/C in medfly larval diets (with excess dietary carbohydrates) resulted in pupating medfly larvae having a relatively reduced load of lipids; medfly larvae protein contents in these diets were, as expected, relatively low. Similarly, high P/C ratios in the diet produced larvae with high protein and lipid contents. Differences with other insects may be due to differential post‐ingestion regulation where a high dietary carbohydrate diet reduces the lipogenic activity of the larvae, and induces a shift from lipid to glucose oxidation. Larvae reared on low P/C diets spent more time foraging in the diet than larvae maintained on a high P/C diet, suggesting a compensatory mechanism to complement nutrient intake. The results suggest that the content of brewer's yeast, the most expensive diet component, could be fine‐tuned without apparently affecting fly quality.  相似文献   

19.
Bioassay studies were conducted to investigate the influence of Dimilin (diflubenzuron), a chitinsynthetase inhibitor used for insecticidal control of the gypsy moth, Lymantria dispar, on the development and viability of a microsporidian pathogen of L. dispar. Before or after an infection with a Nosema species, L. dispar larvae were fed Dimilin in sublethal dosages. Dimilin fed to L. dispar larvae at 0.65 ng/cm2 diet surface resulted in a total larval mortality of 53%. Although the microsporidian infection alone did not cause high mortality rates (9%), mortality increased to 96% when L. dispar larvae were inoculated with both Dimilin and Nosema spores. When Dimilin was fed to the larvae 24 h before or 6 days after inoculation with the microsporidium, the number of mature spores produced was significantly reduced. When Dimilin was fed to the larvae 24 h after microsporidian inoculation, the number of spores produced was not significantly reduced. Spores that were produced in larvae after Dimilin had been ingested with the diet were less infectious than spores produced in control larvae; the experimental infection rate decreased from 94% when spores obtained from control larvae were used, to 48 or 10% when spores obtained from larvae fed Dimilin 24 h or 6 days after Nosema inoculation, respectively, were used. Mature microsporidian spores washed in Dimilin solution prior to oral inoculation, however, were as infectious as spores stored in liquid nitrogen. We have shown that Dimilin interferes with the establishment of the parasite in its host. In addition, when Nosema sp. succeeds in infecting the L. dispar host despite treatment with Dimilin, the microsporidium does not develop optimally and spore production is reduced.  相似文献   

20.
J M Smith 《Sabouraudia》1976,14(1):11-15
Approximately 10(6) spores of Absidia ramosa were inoculated intravenously into normal and cortisone pretreated mice. At subsequent time intervals the liver, lungs and kidneys were removed and examined for fungal localization and growth. In normal mice, spore germination and continued hyphal growth was restricted to the kidneys-evidence of germination not being visible until around 30h post inoculation. Cortisone therapy allowed germination of spores in the lung and kidney by 7h but subsequent hyphal growth in the lung was severely restricted compared with the kidney where extensive hyphal growth occurred. Germination of spores in the liver of cortisone treated animals was slow, not becoming apparent until about 40h after inoculation. These results suggest that host defence mechanisms in the form of phagocytosis as well as biochemical inhibitors and/or lack of suitable stimulators are important in preventing germination of introduced fungal spores. Once germination has occurred, it appears that additional as yet undetermined factors play a role in allowing continued growth of the fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号