首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent data have implicated nuclear factor kappaB (NF-kappaB) in the prevention of apoptosis in transformed cell lines exposed to tumor necrosis factor alpha (TNF-alpha). However, it is obscure whether NF-kappaB plays an anti-apoptotic role in nontransformed cells, and it is not clear whether NF-kappaB inhibits apoptosis triggered by other mediators. We investigated the effect of specific inhibition of NF-kappaB on cytokine-induced apoptosis of glomerular mesangial cells, which is important in determining the outcome of glomerulonephritis. Cultured rat mesangial cells were stably transfected with the dominant negative mutant inhibitor of NF-kappaB (IkappaBalphaM). IkappaBalphaM was resistant to stimulus-dependent degradation and suppressed NF-kappaB activation induced by TNF-alpha (10 ng/ml) or IL-1beta (10 ng/ml). IkappaBalphaM significantly sensitized mesangial cells to TNF-alpha-induced apoptosis in a dose- and time-dependent manner but had no significant effects on the level of apoptosis in the presence of proinflammatory or apoptosis-inducing stimuli including Fas ligand, IL-1alpha, IL-1beta, hydrogen peroxide, lipopolysaccharide, cycloheximide, or serum deprivation. Moreover, IkappaBalphaM-mediated sensitization to TNF-alpha overcame the protective effect of mesangial cell survival factors present in serum, which usually inhibit killing of mesangial cells by the proapoptotic stimuli used. These data show that inhibition of NF-kappaB selectively sensitizes primary adult glomerular mesangial cells to TNF-induced apoptosis but not to other mediators of cell death including the Fas ligand.  相似文献   

2.
We investigated the effects of polymorphonuclear neutrophils (PMN) on the suppressive activities of CD4+ suppressor T cells induced by immobilized mAb to the CD3 molecular complex in order to explore the role of PMN in the regulation of humoral immune responses. CD4+ T cells that had been treated with mitomycin C induced the IgM production from highly purified B cells in cultures stimulated with immobilized anti-CD3. Addition of CD4+ T cells that had not been treated with mitomycin C (control T4 cells) suppressed the IgM production induced by immobilized anti-CD3-stimulated T4 mito. PMN enhanced the degree of suppression of the IgM production by anti-CD3-stimulated control T4 cells. The capacity of PMN to enhance the suppressive activity of anti-CD3-stimulated control T4 cells was restored when PMN were fixed with paraformaldehyde (PFA), suggesting that direct interactions between PMN and CD4+ T cells, but not soluble factors secreted by PMN, were involved in the enhancement of suppression. Fresh PMN as well as PFA-fixed PMN enhanced the endogenous IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells. Moreover, neither fresh PMN nor PFA-fixed PMN significantly augmented the suppressive activity of anti-CD3-stimulated control T4 cells in the presence of exogenous IL-2. These results indicate that PMN enhance the suppressive activity of anti-CD3-stimulated control T4 cells through direct interactions between PMN and CD4+ T cells. The enhancement of the suppressive activity of CD4+ suppressor T cells by PMN is accounted for by the enhancement of the endogenous IL-2 production by anti-CD3-stimulated CD4+ T cells. Thus, the data demonstrate that PMN influence the magnitude of humoral immune responses by regulating the production of IL-2 through direct interactions with T cells.  相似文献   

3.
Interferon-gamma (IFN-gamma) inhibits osteoclastic bone resorption in vitro, but the mechanism responsible for this inhibition is unknown. We have used a long-term human marrow culture system that forms multinucleated cells (MNC) with osteoclast characteristics to test the effect of recombinant human IFN-gamma on MNC formation. The addition of 1,25-dihydroxy-vitamin D3 (1,25D3) at 10(-8) M to these cultures significantly increased both MNC formation and the number of nuclei per MNC. IFN-gamma at 100 U/ml strongly inhibited both of these effects of 1,25D3 in this system. IFN-gamma significantly inhibited MNC formation at very low concentrations (4 U/ml), with 10 U/ml inhibiting 1,25D3-stimulated MNC formation by 50%. In contrast, 100 U/ml of IFN-gamma were required to inhibit the growth of granulocyte-macrophage colony-forming cells, the probable progenitor for MNC, by 50%. Treatment of cultures with IFN-gamma for only the first or last week of culture significantly inhibited MNC formation stimulated by 1,25D3. Autoradiographic studies with [3H]thymidine showed that IFN-gamma did not inhibit proliferation of precursors for MNC. Additionally, IFN-gamma inhibited MNC formation stimulated by parathyroid hormone or interleukin 1. These results suggest that IFN-gamma inhibits MNC formation, and that IFN-gamma inhibits bone resorption in part by inhibiting osteoclast formation.  相似文献   

4.
IL-4 is emerging as a candidate cytokine for the treatment of inflammatory and autoimmune diseases. We have reported that IL-4 has anti-angiogenic activity and inhibits the growth of human umbilical vein endothelial cells (HUVEC) in response to vascular endothelial growth factor (VEGF) or fibroblast growth factor-2 (FGF-2). Cell cycle analysis of this effect revealed that IL-4 arrests the growth of FGF-2-stimulated HUVEC in G0 + G1 phases. The absence of subdiploid cells showed that it did not induce apoptosis. Growth arrest was dose-dependent, but the percentage of G0 + G1 phase cells never exceeded 85%. An immunoblot analysis demonstrated that expression of p53 and p21(Waf1) was increased and that of cyclin D1 and cyclin E decreased by IL-4. These results show that IL-4 inhibits endothelial cell growth by altering the expression of cell cycle regulatory molecules.  相似文献   

5.
Arginine vasopressin (AVP) promotes proliferation of glomerular mesangial cells. We examined whether AVP modulates an apoptosis of cultured rat glomerular mesangial cells at 3-17th passages. The agarose gel electrophoresis demonstrated that AVP attenuated a ladder formation stimulated by the serum deprivation. The quantitation of oligonucleosomes by ELISA also showed that AVP suppressed the serum deprivation-induced apoptosis. Such an antiapoptotic effect of AVP was dose-dependent. An AVP V1a receptor antagonist, d(CH2)5Tyr(Me)AVP, abolished the antiapoptotic effect of AVP. The inhibitory effect of AVP on the apoptosis was reduced by staurosporine and mimicked by phorbol-12-myristate-13-acetate. These results suggest that AVP inhibits serum deprivation-induced apoptosis of glomerular mesangial cells via V1a receptor-protein kinase C pathway.  相似文献   

6.
The aim of this study was to characterize the mediators released by mast cells responsible for IL-8-induced neutrophil migration. It was observed that IL-8 induces a dose-dependent neutrophil migration into peritoneal cavity of rats, but not into air-pouch cavity in which resident mast cells are not present. The transference of peritoneal mast cells to the air-pouch renders this cavity responsive to IL-8. The neutrophil migration induced by IL-8 into the peritoneal cavity was not observed when the peritoneal-resident mast cells were depleted by compound 48/80 or distilled water treatment. Confirming the importance of mast cells, IL-8-stimulated mast cells supernatant induced significant neutrophil migration when injected into peritoneal and air-pouch cavities. The IL-8-induced neutrophil migration was observed not to be dependent on LTB(4), prostaglandins or TNF-alpha, since MK886, indomethacin or thalidomide were unable to block the IL-8-induced neutrophil accumulation 'in vivo' or the release of neutrophil chemotactic factor "in vitro" by IL-8-stimulated mast cells. However, dexamethasone, an inhibitor of the synthesis of pro-inflammatory cytokines, blocked the neutrophil migration induced by IL-8 "in vivo" and also inhibited the release of the neutrophil chemotactic factor by IL-8-stimulated mast cells. Moreover, the incubation of IL-8-stimulated mast cells supernatant with antibody against cytokine-induced neutrophil chemoattractant 1 (CINC-1), but not against TNF-alpha or IL-1beta, inhibited its neutrophil chemotactic activity. Furthermore, we found a significant amount of CINC-1 in this supernatant. In conclusion, we demonstrated that the neutrophil migration induced by IL-8 is dependent on CINC-1 release from mast cells.  相似文献   

7.
Decreased degradation of the glomerular extracellular matrix (ECM) is thought to contribute to the accumulation of glomerular ECM that occurs in diabetic nephropathy and other chronic renal diseases. Several lines of evidence indicate a key role for the plasminogen activator/plasminogen/plasmin system in glomerular ECM degradation. However, which of the two plasminogen activators (PAs) present in renal tissue, tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA), is responsible for plasmin generation and those factors that modulate the activity of this system remain unclear. This study utilized mesangial cells isolated from mice with gene deletions for tPA, uPA, and plasminogen activator inhibitor 1 (PAI-1) to further delineate the role of the PA/plasminogen/plasmin system in ECM accumulation. ECM degradation by uPA-null mesangial cells was not significantly different from controls (92% +/- 1%, n = 12). In contrast, ECM degradation by tPA-null mesangial cells was markedly reduced (-78 +/- 1%, n = 12, P < 0.05) compared with controls, whereas tPA/uPA double-null mesangial cells degraded virtually no ECM. Previous studies from this laboratory have established that transforming growth factor-beta1 (TGFbeta1) inhibits ECM degradation by cultured mesangial cells by increasing the production of PAI-1, the major physiological PA inhibitor. In keeping with this observation, TGFbeta1 (1 ng/ml) had no effect on ECM degradation by PAI-1-null MC. High glucose levels (30 mM) in the presence or absence of insulin (0.1 mM) caused a moderate increase in ECM degradation by normal human mesangial cells. In contrast, glycated albumin, whose concentration is known to increase in diabetes, produced a dose-dependent (0.2-0.5 mg/ml) inhibition of ECM degradation by normal human mesangial cells. Taken together, these results document the importance of tPA versus uPA in renal plasmin production and indicate that in contrast to elevated glucose, glycated albumin may contribute to ECM accumulation in diabetic nephropathy.  相似文献   

8.
CD8(+) T cells become exhausted, inducing cell surface protein programmed cell death-1 (PD-1) as chronic virus diseases or tumors progress, but underlying mechanisms of this are unclear. We previously showed that M-CSF is important for developing tolerogenic dendritic cells (DCs) from human CD14(+) monocytes. In this article, we identify M-CSF-derived DCs (M-DCs) after stimulation with IL-10 as myeloid-derived suppressor cells with additional tolerogenic activities to CD8(+) T cells. IL-10 increased PD-1 ligand expression on M-DC, and IL-10-stimulated M-DCs (M-DC/IL-10) induced expression of PD-1 on, and apoptosis of, CD8(+) T cells and phagocytosed CD8(+) T cells. Enhanced phagocytic activity of M-DC/IL-10 required IFN-γ, which further increased PD-1 ligand and PD-2 ligand expression on M-DC/IL-10. IFN-γ-stimulated M-DC/IL-10 cells were phenotypically macrophage-like cells with little or no expression of CD86, a costimulatory molecule, but with high expression levels of CD14, CD200R, and CD80. No phagocytic activity was detected with GM-CSF-derived DCs. We propose that phagocytosis by IFN-γ-stimulated M-DC/IL-10 cells, which may be DCs or, alternatively, a unique subset of macrophages, may be a mechanism by which IFN-γ-producing CD8(+) T cells are tolerized after type 1 immune responses to chronic virus or tumor, and that IFN-γ links effector CD8(+) T cells to their phagocytic clearance.  相似文献   

9.
We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1β-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE2 without modulation of expression of COX-2 in IL-1β-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1β-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE2 production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE2 and proliferation of IL-1β-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1β-stimulated VSMC. NS-398 inhibited proliferation of IL-1β-stimulated VSMC in a HbO2-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1β-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.  相似文献   

10.
This study describes a potential of Phytolaccaceae (Phytolacca americana var.) as an inhibitor of high glucose-stimulated production of extracellular matrix (ECM) proteins and TGF-beta in cultured glomerular mesangial cells (GMCs). Raising the ambient glucose concentration for 24 hrs caused a dose-dependent increase in [3H]thymidine incorporation of GMCs, and the maximal response was achieved at 20 mM. Phytolaccaceae extracts (2.5-20 microg/ml) inhibited the high glucose-induced [3H]thymidine incorporation in a dose-dependent manner, and the concentrations tested here did not affect to the cell viability. Exposure of the GMCs to 20 mM glucose caused both ECM (collagen and fibronectin) accumulation and TGF-beta secretion, and these changes were significantly diminished by treatment of GMCs with Phytolaccaceae (10 microg/ml). Taken together, these results indicate that Phytolaccaceae inhibits the high glucose-induced GMCs proliferation partially through suppressing accumulation of ECM components and TGF-beta production, suggesting that Phytolaccaceae may be a promising agent for treating the development and progression of diabetic glomerulopathy.  相似文献   

11.
Pokeweed mitogen (PWM) suppressed rhIL-4-induced IgE synthesis in a concentration-dependent manner. When rhIL-4 was present from Day 0, PWM added to cultures on Day 0 or 3 inhibited MNC IgE synthesis but not when it was added on Day 6 or later. The concentration of interferon-gamma (IFN-gamma) in MNC culture supernatants varied directly with the quantity of PWM added. Conversely, rhIL-4-stimulated MNC culture IgE concentrations varied inversely with the dose of PWM added and the IFN-gamma concentrations induced. The addition of a rabbit polyclonal neutralizing anti-human IFN-gamma antibody to rhIL-4 plus PWM-stimulated cultures partially or completely reversed PWM-induced inhibition of rhIL-4-induced IgE synthesis. PWM failed to inhibit rhIL-4-induced IgE synthesis by isolated B cells cocultured with monocytes and T cells from a clone unable to produce IFN-gamma message or protein. These findings are consistent with the postulate that PWM inhibits rhIL-4-induced IgE synthesis by inducing the production of IFN-gamma.  相似文献   

12.
Treatment of intact human umbilical vein endothelial cells with NaF results in a dose-dependent biphasic response in both prostacyclin and inositol phosphate production: the stimulation observed with 10-20 mM NaF decreases with higher concentrations. High concentrations of NaF furthermore reduce thrombin- or A23187-stimulated prostacyclin production. Direct assay of phospholipase C activity in cell homogenates shows a similar biphasic response to NaF, also after chelation of Ca2+; addition of AlCl3 shifts the inhibition toward lower NaF concentrations. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) also causes a dose-dependent biphasic response in inositol phosphate formation in permeabilized cells and homogenates; a higher inhibitory concentration of GTP gamma S abolishes the stimulation of inositol phosphate production by low NaF concentrations. A high concentration of NaF furthermore inhibits the non-G-protein-dependent activation of phospholipase C by deoxycholate. NaF also induces a dose-dependent biphasic response in cyclic AMP formation in intact cells, indicating that the inhibition of phospholipase C at higher NaF concentrations does not result from a rise in cyclic AMP. The data are compatible with the existence of a guanine nucleotide-dependent, cyclic AMP-independent, phospholipase C-inhibitory pathway in endothelial cells.  相似文献   

13.
Macrophages, in general, are critical effectors of body's immune system. Chemical inhibition of phagocytic activity of such macrophages as Kupffer cells has been extensively studied. We have earlier shown that methyl palmitate (MP) inhibits the activation of Kupffer cells. To evaluate the potential of MP to inhibit the activation of other macrophages, we treated rat peritoneal macrophages with varying concentrations of MP. Its treatment led to a dose-dependent inhibition of phagocytic activity, which was found to be 34%, 47%, and 66% at 0.25, 0.50, and 1.0 mM MP, respectively, as measured by latex bead uptake. When MP-treated peritoneal macrophages were stimulated with lipopolysaccharide (LPS), the nitric oxide (.NO) release was inhibited at 6 h, while cyclooxygenase-2 expression decreased after 24 h. The treatment with MP increased the release of interleukin (IL)-10 in the LPS-treated cells at 6 h, while IL-6 and tumor necrosis factor-alpha were significantly increased both at 6 and 24 h. Our data suggest that MP inhibits phagocytic activity and .NO production similar to that observed in isolated Kupffer cells. Therefore, inhibition of phagocytosis by MP may be a general phenomenon, and it could be used as an inhibitor of macrophage function.  相似文献   

14.
The resolution of inflammation is a dynamically regulated process that may be subverted in many pathological conditions. Macrophage (Mphi) phagocytic clearance of apoptotic leukocytes plays an important role in the resolution of inflammation as this process prevents the exposure of tissues at the inflammatory site to the noxious contents of lytic cells. It is increasingly appreciated that endogenously produced mediators, such as lipoxins, act as potent regulators (nanomolar range) of the phagocytic clearance of apoptotic cells. In this study, we have investigated the intriguing possibility that apoptotic cells release signals that promote their clearance by phagocytes. We report that conditioned medium from apoptotic human polymorphonuclear neutrophils (PMN), Jurkat T lymphocytes, and human mesangial cells promote phagocytosis of apoptotic PMN by Mphi and THP-1 cells differentiated to a Mphi-like phenotype. This prophagocytic activity appears to be dose dependent, sensitive to the caspase inhibitor zVAD-fmk, and is associated with actin rearrangement and release of TGF-beta1, but not IL-8. The prophagocytic effect can be blocked by the formyl peptide receptor antagonist Boc2, suggesting that the prophagocytic factor(s) may interact with the lipoxin A(4) receptor, FPRL-1. Using nanoelectrospray liquid chromatography mass spectrometry and immunodepletion and immunoneutralization studies, we have ascertained that annexin-1 and peptide derivatives are putative prophagocytic factors released by apoptotic cells that promote phagocytosis of apoptotic PMN by M[phi] and differentiated THP-1 cells. These data highlight the role of annexin-1 and peptide derivatives in promoting the resolution of inflammation and expand on the therapeutic anti-inflammatory potential of annexin-1.  相似文献   

15.
Low-density lipoprotein (LDL) may contribute to the pathogenesis of glomerulosclerosis by stimulating a mesangial cell inflammatory response. Interleukin-6 (IL-6) is a marker of active inflammation and ongoing glomerular injury. Therefore, we investigated the effects of native and oxidized LDL on human mesangial cell production of IL-6 and a possible modulation of this inflammatory response by lovastatin, which has been shown to ameliorate experimental glomerulosclerosis. Human mesangial cells were exposed for 6 or 24 h to culture medium containing either native LDL alone or a LDL mixture containing 5 or 20% oxidized LDL. We found that native LDL stimulated 6 h mRNA expression and secretion of IL-6. This effect was further enhanced, in a dose-related manner, when mesangial cells were exposed to increasing concentrations of oxidized LDL. Lovastatin markedly inhibited mesangial cell expression of IL-6 mRNA and reduced IL-6 secretion. The inhibitory effects of lovastatin were overridden at least partially by exogenous mevalonate. We conclude that LDL, and particularly oxidized LDL, might contribute to the pathogenesis of glomerular disease by modulating the inflammatory response of human mesangial cells, as assessed by the stimulation of IL-6 expression. Moreover, this inflammatory response can be prevented by lovastatin, providing a potential direct anti-inflammatory mechanism by which HMG-CoA reductase inhibitors may attenuate lipid-induced glomerular injury.  相似文献   

16.
Type IV collagen, which is encoded by six genetically distinct alpha-chains (alpha 1-alpha 6), is a major component of the kidney glomerulus. The alpha 1(IV) and alpha 2(IV) chains are present predominantly in the mesangial matrix, whereas the alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains are localized almost exclusively to the glomerular basement membrane (GBM). Thickening of the GBM and expansion of the mesangial matrix are believed to contribute to the pathogenesis of diabetic nephropathy. In the present study, we evaluated the expression of alpha 1(IV), alpha 3(IV), and alpha 5(IV) chains in rat glomerular endothelial (GEndC) and mesangial cells (GMC). Under physiological concentrations of glucose (5 mM), alpha 1(IV) and alpha 5(IV) chains were detectable in GMCs, with an obvious absence of alpha 3(IV) chain. All three isoforms tested were present in GEndCs. At diabetic concentrations of glucose (25 mM), alpha 1(IV) was up-regulated in GMCs, whereas expression level of alpha 1(IV) remained unaltered in GEndCs. The alpha 3(IV) and alpha 5(IV) chains were up-regulated in GEndCs, but remained unchanged in GMCs under diabetic glucose concentrations (25 mM). Collectively, our results demonstrate that GMC might contribute to mesangial matrix expansion, mediated by alpha 1(IV) collagen, while GEndC might contribute to thickening of GBM, mediated by alpha 3(IV) collagen, in patients with diabetic nephropathy.  相似文献   

17.
Depositions of IgA in the renal glomerular mesangial area are a hallmark of IgA nephropathy, and are thought to be crucial for the onset of inflammation processes in IgA nephropathy. In this report we show that human mesangial cells (MC) in vitro bind IgA and that binding of IgA enhances the production of IL-6 by MC. Furthermore we show that the size of IgA is crucial in its capability to enhance IL-6 production. Monomeric IgA does not affect basic IL-6 production, whereas dimeric and polymeric IgA enhance IL-6 production up to 3- to 9-fold respectively. Additional studies demonstrate that enhanced IL-6 production by MC is not accompanied by increased proliferation of human mesangial cells, a finding which is distinct from that found with rat mesangial cells. Taken together, these fmdings suggest that deposition of dimeric and polymeric IgA in the mesangial area of human kidneys in IgA nephropathy may amplify local inflammation.  相似文献   

18.
19.
Both IL-1 alpha and IL-1 beta and TNF-alpha induced a time- and dose-dependent release of authentic PGE2 from cultured human glomerular mesangial cells (HMC). This release became significant only after a 4- to 6-h lag phase, and was abolished by inhibition of protein synthesis, and was not related to cell proliferation. Combinations of IL-1 and TNF-alpha when added simultaneously to HMC resulted in a dose-dependent synergistic increase in PGE2 production. These stimulatory effects were specifically inhibited by anticytokine antibodies and the synergistic effect required the simultaneous presence of both IL-1 and TNF-alpha. Arachidonic acid (AA) release experiments and measurement of cyclooxygenase activity, revealed that while both were increased by IL-1 beta and TNF-alpha alone (IL-1 beta greater than TNF-alpha), combinations of IL-1 beta and TNF-alpha resulted in only additive increases in AA release and cyclooxygenase activity. Taken together, these data suggest that stimulation of PGE2 in HMC, by combinations of these cytokines, is not rate limited by AA release or cyclooxygenase activation, but may be related to the induction of the distal enzymes controlling specific PG synthesis.  相似文献   

20.
5-azacytidine (AZA) yields hematologic improvement in patients with myelodysplastic syndromes (MDS). Ineffective hemopoiesis in MDS produce the paradox of high intramedullary cellularity with peripheral cytopenias. Leukemia inhibitory factor (LIF), oncostatin M (OSM), interleukin (IL)-6, and IL-11 regulate hemopoiesis and LIF, OSM, and IL-6 also inhibit the proliferation of myeloid leukemic cell lines through the signal-transducing subunit gp130. These IL-6-type cytokines were measured by enzyme-linked immunosorbent assay in cell culture supernatants (SN) obtained from peripheral blood mononuclear cells (MNC) and monocyte-depleted MNC of patients with refractory anemia (RA; n=12) and healthy individuals (n=10). AZA down-regulated OSM, IL-6, and IL-11 release by MNC of patients but not by MNC from healthy individuals. Patient's SN had significantly lower concentrations of LIF, OSM, and IL-11 than SN of normal subjects. When monocyte-depleted MNC of patients were stimulated with phytohemagglutinin a significant increment in OSM levels was observed. In contrast, monocyte depletion in healthy subjects did not cause any significant change in OSM values. We conclude that: (a) AZA inhibits the release of OSM, IL-6, and IL-11 exclusively in RA-diseased MNC, (b) Patient's MNC release subnormal amounts of LIF, OSM, and IL-11, and (c) RA-derived monocytes probably down-regulate OSM release by phytohemagglutinin-activated MNC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号