首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autotransporters are a superfamily of proteins secreted by Gram-negative bacteria including many virulence factors. They are modular proteins composed of an N-terminal signal peptide, a surface-exposed ‘passenger’ domain carrying the activity of the protein, and a C-terminal ‘translocator’ domain composed of an α-helical linker region and a transmembrane β-barrel. The translocator domain plays an essential role for the secretion of the passenger domain across the outer membrane; however, the mechanism of autotransport remains poorly understood. The whooping cough agent Bordetella pertussis produces an autotransporter serine-protease, SphB1, which is involved in the maturation of an adhesin at the bacterial surface. SphB1 also mediates the proteolytic maturation of its own precursor. We used SphB1 as a model autotransporter and performed the first comparisons of the biochemical and biophysical properties of an isolated translocator domain with those of the same domain preceded by the C-terminal moiety of its natural passenger. By using cross-linking and dynamic light scattering, we provide evidence that the passenger domain promotes the auto-association of SphB1, although these interactions appear rather labile. Electrophysiological studies revealed that the passenger domain of the autotransporter appears to maintain the translocator channel in a low-conductance conformation, most likely by stabilizing the α-helix inside the pore. That the passenger may significantly influence AT physicochemical properties is likely to be relevant for the in vivo maturation and stability of AT proteins.  相似文献   

2.
Gram-negative bacterial autotransporter proteins are a growing group of virulence factors that are characterized by their ability to cross the outer membrane without the help of accessory proteins. A conserved C-terminal beta-domain is critical for targeting of autotransporters to the outer membrane and for translocation of the N-terminal "passenger" domain to the bacterial surface. We have demonstrated previously that the Haemophilus influenzae Hia adhesin belongs to the autotransporter family, with translocator activity residing in the C-terminal 319 residues. To gain further insight into the mechanism of autotransporter protein translocation, we performed a structure-function analysis on Hia. In initial experiments, we generated a series of in-frame deletions and a set of chimeric proteins containing varying regions of the Hia C terminus fused to a heterologous passenger domain and discovered that the final 76 residues of Hia are both necessary and sufficient for translocation. Analysis by flow cytometry revealed that the region N-terminal to this shortened translocator domain is surface localized, further suggesting that this region is not involved in beta-barrel formation or in translocation of the passenger domain. Western analysis demonstrated that the translocation-competent regions of the C terminus migrated at masses consistent with trimers, suggesting that the Hia C terminus oligomerizes. Furthermore, fusion proteins containing a heterologous passenger domain demonstrated that similarly small C-terminal regions of Yersinia sp. YadA and Neisseria meningitidis NhhA are translocation-competent. These data provide experimental support for a unique subclass of autotransporters characterized by a short trimeric translocator domain.  相似文献   

3.
Autotransporter proteins are defined by the ability to drive their own secretion across the bacterial outer membrane. The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adhesion to the respiratory epithelium. In this report, we present the crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992-1098). This domain forms a beta-barrel with 12 transmembrane beta-strands, including four strands from each subunit. The beta-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal alpha-helices, one from each subunit. Mutagenesis studies demonstrate that the transmembrane portion of the three alpha-helices and the loop region between the alpha-helices and the neighboring beta-strands are essential for stability of the trimeric structure of the translocator domain, and that trimerization of the translocator domain is a prerequisite for translocator activity. Overall, this study provides important insights into the mechanism of translocation in trimeric autotransporters.  相似文献   

4.
Autotransporters are virulence-related proteins of Gram-negative bacteria that are secreted via an outer-membrane-based C-terminal extension, the translocator domain. This domain supposedly is sufficient for the transport of the N-terminal passenger domain across the outer membrane. We present here the crystal structure of the in vitro-folded translocator domain of the autotransporter NalP from Neisseria meningitidis, which reveals a 12-stranded beta-barrel with a hydrophilic pore of 10 x 12.5 A that is filled by an N-terminal alpha-helix. The domain has pore activity in vivo and in vitro. Our data are consistent with the model of passenger-domain transport through the hydrophilic channel within the beta-barrel, and inconsistent with a model for transport through a central channel formed by an oligomer of translocator domains. However, the dimensions of the pore imply translocation of the secreted domain in an unfolded form. An alternative model, possibly covering the transport of folded domains, is that passenger-domain transport involves the Omp85 complex, the machinery required for membrane insertion of outer-membrane proteins, on which autotransporters are dependent.  相似文献   

5.
Protein secretion through autotransporter and two-partner pathways   总被引:1,自引:0,他引:1  
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.  相似文献   

6.

Cell surface display is a popular approach for the construction of whole-cell biocatalysts, live vaccines, and screening of combinatorial libraries. To develop a novel surface display system for the popular scaffold protein 10th human fibronectin type III domain (10Fn3) in Escherichia coli cells, we have used an α-helical linker and a C-terminal translocator domain from previously characterized autotransporter from Psychrobacter cryohalolentis K5T. The level of 10Fn3 passenger exposure at the cell surface provided by the hybrid autotransporter Fn877 and its C-terminal variants was low. To improve it, the fusion proteins containing 10Fn3 and the native autotransporter passenger Est877 or the cold-active esterase EstPc in different orientations were constructed and expressed as passenger domains. Using the whole-cell ELISA and activity assays, we have demonstrated that N-terminal position of EstPc in the passenger significantly improves the efficiency of the surface display of 10Fn3 in E. coli cells.

  相似文献   

7.
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme beta-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.  相似文献   

8.
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme β-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.  相似文献   

9.
Renn JP  Clark PL 《Biopolymers》2008,89(5):420-427
In Gram-negative bacteria, a wide variety of virulence factors are secreted via the autotransporter (AT) pathway. Intriguingly, there is no significant concentration of ATP in the periplasm, nor a proton gradient across the OM, so the energetic origin of efficient secretion of AT proteins is unknown. More than 97% of AT proteins are predicted to contain right-handed parallel beta-helical structure, and the three crystal structures available for AT passenger domains each contain a long right-handed parallel beta-helix. Previous studies have shown that pertactin, an AT from Bordetella pertussis, exhibits three-state folding and has a C-terminal stable core structure. Here, we show that Pet, an unrelated AT from Escherichia coli, also exhibits three-state unfolding and also has a stable core structure. Deletion mutants, mass spectrometry, and N-terminal sequencing demonstrate that the Pet stable core is also located near the C-terminus of the passenger domain. Moreover, sequence analysis suggests that three-state folding and a C-terminal stable core structure could be important general features of the biogenesis of AT proteins in vivo.  相似文献   

10.
Many virulence factors of gram-negative bacteria are secreted by the Type V secretion system via the autotransporter (AT) and two-partner secretion (TPS) pathways. AT proteins effect their own secretion. They comprise three domains: the amino-terminal leader sequence; the secreted passenger domain; and the translocator domain that forms the secretory channel. In the TPS pathway, the passenger and translocator domains are translated as separate proteins. In a previous publication, we proposed a beta-helical structure for the TPS passenger domain of the filamentous hemagglutinin (FHA) of Bordetella pertussis which contains two tracts, R1 and R2, of 19-residue sequence repeats and built molecular models for the R1 and R2 beta-helices. Here, we compare the structure predicted for R1 with the recently determined crystal structure of a fragment containing three R1 repeats and find close agreement, with an RMSD of 1.1A. In the interim, the number of known AT and TPS protein sequences has increased to >1000. To investigate the incidence of beta-helical structures among them, we carried out a sequence-based analysis and conclude that, despite wide diversity in the sizes and sequences of passenger domains, most of them contain beta-solenoids that we classify into thirteen types based on distinctive properties of their beta-coils (repeat length, numbers and lengths of beta-strands and turns, cross-sectional shape, presence of specific residues in certain positions) summarized in a 2D coil template. Some coil types are typical for conventional AT proteins, others, for TPS or trimeric AT proteins. Some beta-solenoids consist of stacked subdomains with coils of different types. To illustrate model-building from a coil template, we modeled a type-T4 beta-solenoid for TibA of Escherichia coli which is predicted to have two conserved polar residues, Thr and Gln, in interior positions.  相似文献   

11.
Autotransporter proteins: novel targets at the bacterial cell surface   总被引:3,自引:0,他引:3  
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.  相似文献   

12.
The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adherence to the respiratory epithelium. In this report, we show that the structure of Hia is characterized by a modular architecture containing repeats of structurally distinct domains. Comparison of the structures of HiaBD1 and HiaBD2 adhesive repeats and a nonadhesive repeat (a novel fold) shed light on the structural determinants of Hia adhesive function. Examination of the structure of an extended version of the Hia translocator domain revealed the structural transition between the C-terminal translocator domain and the N-terminal passenger domain, highlighting a highly intertwined domain that is ubiquitous among trimeric autotransporters. Overall, this study provides important insights into the mechanism of Hia adhesive activity and the overall structure of trimeric autotransporters.  相似文献   

13.
Many extracytoplasmic proteins undergo proteolytic processing during secretion, which is essential to their maturation. These post-translational modifications are carried out by specific enzymes whose subcellular localization is important for function. We have described a maturation subtilisin in Gram-negative Bordetella pertussis, the autotransporter SphB1. SphB1 catalyses the maturation of the precursor of the adhesin filamentous haemagglutinin (FHA) at the bacterial surface, in addition to the processing of its own precursor. Here, we show that the outer membrane anchor of SphB1 is crucial to its function, as evidenced by the lack of FHA maturation in a strain releasing a variant of SphB1 into the milieu. In contrast, surface association is not required for automaturation of SphB1. The surface retention of mature SphB1 is mediated by lipidation of the protein. The tethered protease appears to be stabilized by unusual Gly- and Pro-rich motifs at the N-terminus of the protein. This represents a new mode of localization for a protease involved in protein secretion.  相似文献   

14.
The Rickettsia genus is a group of obligate intracellular parasitic alpha-proteobacteria that includes human pathogens responsible for the typhus disease and various types of spotted fevers. rOmpA and rOmpB are two members of the "surface cell antigen" (Sca) autotransporter (AT) protein family that may play key roles in the adhesion of the Rickettsia cells to the host tissue. These molecules are likely determinants for the pathogenicity of the Rickettsia and represent good candidates for vaccine development. We identified the 17 members of this family of outer-membrane proteins in nine fully sequenced Rickettsia genomes. The typical architecture of the Sca proteins is composed of an N-terminal signal peptide and a C-terminal AT domain that promote the export of the central passenger domain to the outside of the bacteria. A characteristic of this family is the frequent degradation of the genes, which results in different subsets of the sca genes being expressed among Rickettsia species. Here, we present a detailed analysis of their phylogenetic relationships and evolution. We provide strong evidence that rOmpA and rOmpB as well as three other members of the Sca protein family--Sca1, Sca2, and Sca4--have evolved under positive selection. The exclusive distribution of the predicted positively selected sites within the passenger domains of these proteins argues that these regions are involved in the interaction with the host and may be locked in "arms race" coevolutionary conflicts.  相似文献   

15.
Proteins of Gram-negative bacteria destined to the extracellular milieu must cross the two cellular membranes and then fold at the appropriate time and place. The synthesis of a precursor may be a strategy to maintain secretion competence while preventing aggregation or premature folding (especially for large proteins). The secretion of 230 kDa filamentous haemagglutinin (FHA) of Bordetella pertussis requires the synthesis and the maturation of a 367 kDa precursor that undergoes the proteolytic removal of its approximately 130 kDa C-terminal intramolecular chaperone domain. We have identified a specific protease, SphB1, responsible for the timely maturation of the precursor FhaB, which allows for extracellular release of FHA. SphB1 is a large exported protein with a subtilisin-like domain and a C-terminal domain typical of bacterial autotransporters. SphB1 is the first described subtilisin-like protein that serves as a specialized maturation protease in a secretion pathway of Gram-negative bacteria. This is reminiscent of pro-protein convertases of eukaryotic cells.  相似文献   

16.
The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.  相似文献   

17.
Autotransporters (ATs) are large virulence factors secreted by Gram-negative bacteria. The passenger domain, carrying the virulence functions, is transported across the bacterial outer membrane in a step that is facilitated by a C-terminal β-domain. This domain folds into a β-barrel with a central aqueous pore of ~1 nm inner diameter according to crystal structures. However, these static dimensions are not compatible with the observed secretion of passengers that may contain natural short-spaced disulfide bonds or artificially fused folded elements. Here, we have systematically analyzed the dimensions of the active AT passenger translocator by inserting peptides of different length and structural complexity in the passenger of the AT hemoglobin protease. The peptides were introduced in a short loop protruding from the main structure and flanked by two single cysteines. Our results show that the attained secondary structure may be more critical for secretion than the length of peptide inserted. Furthermore, the data suggest that, during passenger translocation, at least four extended polypeptides or an extended polypeptide and an α-helix are accommodated in the translocator, indicating that the diameter of the active translocation pore is up to 1.7 nm. If the β-domain functions as the translocator, it must be forced into an expanded conformation during passenger translocation.  相似文献   

18.
Bacterial autotransporters are proteins that contain a small C-terminal 'beta domain' that facilitates translocation of a large N-terminal 'passenger domain' across the outer membrane (OM) by an unknown mechanism. Here we used EspP, an autotransporter produced by Escherichia coli 0157:H7, as a model protein to gain insight into the transport reaction. Initially we found that the passenger domain of a truncated version of EspP (EspPDelta1-851) was translocated efficiently across the OM. Blue Native polyacrylamide gel electrophoresis, analytical ultracentrifugation and other biochemical methods showed that EspPDelta1-851 behaves as a compact monomer and strongly suggest that the channel formed by the beta domain is too narrow to accommodate folded polypeptides. Surprisingly, we found that a folded protein domain fused to the N-terminus of EspPDelta1-851 was efficiently translocated across the OM. Further analysis revealed that the passenger domain of wild-type EspP also folds at least partially in the periplasm. To reconcile these data, we propose that the EspP beta domain functions primarily to target and anchor the protein and that an external factor transports the passenger domain across the OM.  相似文献   

19.
In recent years, structural studies have identified a number of bacterial, viral, and eukaryotic adhesive proteins that have a trimeric architecture. The prototype examples in bacteria are the Haemophilus influenzae Hia adhesin and the Yersinia enterocolitica YadA adhesin. Both Hia and YadA are members of the trimeric-autotransporter subfamily and are characterized by an internal passenger domain that harbors adhesive activity and a short C-terminal translocator domain that inserts into the outer membrane and facilitates delivery of the passenger domain to the bacterial surface. In this study, we examined the relationship between trimerization of the Hia and YadA passenger domains and the capacity for adhesive activity. We found that subunit-subunit interactions and stable trimerization are essential for native folding and stability and ultimately for full-level adhesive activity. These results raise the possibility that disruption of the trimeric architecture of trimeric autotransporters, and possibly other trimeric adhesins, may be an effective strategy to eliminate adhesive activity.  相似文献   

20.
The autotransporter family of proteins is an important class of Gram-negative secreted virulence factors. Their secretion mechanism comprises entry to the periplasm via the Sec apparatus, followed by formation of an outer membrane beta barrel, which allows the N-terminal passenger domain to pass to the extracellular space. Several groups have identified a region immediately upstream of the beta domain that is important for outer membrane translocation, the so-called linker region. Here we characterize this region in EspP, a prototype of the serine protease autotransporters of enterobacteriaceae. We hypothesized that the folding of this region would be important in the outer membrane translocation process. We tested this hypothesis using a mutagenesis approach in conjunction with a series of nested deletions and found that in the absence of a complete passenger, mutations to the C-terminal helix, but not the upstream linker, significantly decrease secretion efficiency. However, in the presence of the passenger mutations to the amino-terminal region of the linker decrease secretion efficiency. Moreover, amino acids of hydrophobic character play a crucial role in linker function, suggesting the existence of a hydrophobic core or hydrophobic interaction necessary for outer membrane translocation of autotransporter proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号