首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia induces angiogenesis in ischemized tissues by means of pro-angiogenic factor expression. The key role in the growth processes and blood vessel functioning belongs to the matrix metalloproteinases, plasminogen, and its activator systems. Effect of hypoxia on expression of the urokinase activating agent plasminogen and its receptor in endothelium was studied in human umbilical vein endothelial cell model. Incubation of the endothelial cells under the conditions of hypoxia proved to reduce both urokinase formation in these cells and its secreting into the culture medium. The hypoxia-induced reduction of urokinase contents was accompanied by enhancement of expression of the urokinase receptor. The hypoxia also entailed reduction of the adenylate cyclase activity and cAMP contents in the endothelial cells. The data obtained suggest that reduction of the adenylate cyclase activity and cAMP contents under the conditions of hypoxia provide basis for suppression of the urokinase expression by the endothelial cells and, consequently, inhibition of blood vessel formation in the ischemized tissue.  相似文献   

2.
Experiments on anaesthetized dogs have shown, that reperfusion of ischemized tissues is accompanied by significant increase in thromboxane A2 (Tx A2) and prostacyclin (PG I2) blood level and by development of pronounced cardiovascular insufficiency. Preliminary blockade of prostaglandins biosynthesis prevent an increase of TbA2 and PG12 blood level, postreperfusion disturbances of central and regional circulation develop later and are less pronounced. Therefore, endogenic prostaglandins take part in the development of post ischemic shock reaction, influencing chiefly the venous vessels and blood return to heart.  相似文献   

3.
Experimental temporary occlusion of the dog hind limbs was produced. Histoenzymological changes in the liver induced by the temporary ischemia of the limbs and by ischemia with a 2-hour revascularization were subjected to comparative histophotometric examination. The data obtained indicate an appreciable rise in the enzymatic activity of hepatocytes at the early stages of experiments and increasing reduction in metabolic processes at the later stages. A substantial decrease was noted in the activity of the liver enzymes under study, with that decrease being especially pronounced at the later times in experiments with limb revascularization, which is accounted for by a far greater release to the bloodstream of metabolic products from the ischemized limbs.  相似文献   

4.
Experiments carried out on anesthetized dogs have shown that reperfusion of long-ischemized leg tissues is accompanied by a significant decrease of the cardiac output and myocardial contractility. Restriction of the venous return to the heart is important in the cardiac output decrease due to an increase of venous compliance and blood pooling on the peripheral circulation. The preliminary blockade of platelet-activating factor (PAF) receptors decreases degree of the cardio- and hemodynamic disturbances after reperfusion of ischemized tissues and prevents development of pulmonary hypertension. Similarity of the postreperfusion central and peripheral hemodynamic disturbances and animal responses to injection of the exogenous PAF as well as the presence of the protective effect of PAF-receptor antagonist BNo. 52021 permit concluding, that PAF takes part in the development of postischemic shock reaction and its receptor blockade can be used to prevent postreperfusion hemodynamic disorders.  相似文献   

5.
Vitronectin (Vn) stabilizes the inhibitory form of plasminogen activator inhibitor-1 (PAI-1), an important modulator of fibrinolysis. We have previously reported that Vn is specifically phosphorylated by PKA (at Ser378), a kinase we have shown to be released from platelets upon their physiological activation. Here we describe the molecular consequences of this phosphorylation and show (by circular dichroism, and by phosphorylation with casein kinase II) that it acts by modulating the conformation of Vn. The PKA phosphorylation of Vn is enhanced in the presence of either PAI-1, or heparin, or both. This enhanced phosphorylation occurs exclusively on Ser378 as shown with the Vn mutants Ser378Ala and Ser378Glu. The binding of PKA phosphorylated Vn to immobilized PAI-1 and to immobilized plasminogen is shown to be lower than that of Vn. The evidence compiled here suggests that this phosphorylation of Vn can modulate plasminogen activation and consequently control fibrinolysis.  相似文献   

6.
Serpins (serine protease inhibitors) are a large family of structurally related proteins found in a wide variety of organisms, including hematophagous arthropods. Protein analyses revealed that Iris, previously described as an immunomodulator secreted in the tick saliva, is related to the leukocyte elastase inhibitor and possesses serpin motifs, including the reactive center loop (RCL), which is involved in the interaction between serpins and serine proteases. Only serine proteases were inhibited by purified recombinant Iris (rIris), whereas mutants L339A and A332P were found devoid of any protease inhibitory activity. The highest Ka was observed with human leukocyte-elastase, suggesting that elastase-like proteases are the natural targets of Iris. In addition, mutation M340R completely changed both Iris substrate specificity and affinity. This likely identified Met-340 as amino acid P1 in the RCL. The effects of rIris and its mutants were also tested on primary hemostasis, blood clotting, and fibrinolysis. rIris increased platelet adhesion, the contact phase-activated pathway of coagulation, and fibrinolysis times in a dose-dependent manner, whereas rIris mutant L339A affected only platelet adhesion. Taken together, these results indicate that Iris disrupts coagulation and fibrinolysis via the anti-proteolytic RCL domain. One or more other domains could be responsible for primary hemostasis inhibition. To our knowledge, this is the first ectoparasite serpin that interferes with both hemostasis and the immune response.  相似文献   

7.
There is a controversy over when to release a pneumatic tourniquet after completing a hand surgical procedure. To study this controversy, we performed a standardized operation with tourniquet inflow occlusion on both lower legs of a series of rabbits. Total tourniquet time and the procedure performed, including intraoperative Bovie electrocautery of actual and potential bleeding points identified with 2.5 X loupe magnification, were identical on the two sides, except for the method of tourniquet release. On one leg, the tourniquet was released and all new bleeding points were controlled prior to wound closure. On the other leg, the tourniquet was released after the wound had been closed and dressed. Animals were injected with technetium-99m-labeled red blood cells and scanned to measure hematoma formation. Qualitatively, we observed more label in the leg whose tourniquet was released after wound closure in 17 of the 20 animals (p less than 0.005). Quantitatively, we also measured more mean label in the leg whose tourniquet was released after the wound was closed (p less than 0.001). Tourniquet release after wound closure was associated with greater hematoma formation.  相似文献   

8.
Experiments on rats have shown that thymectomy brings about the development of hypercoagulation and inhibition of fibrinolysis. Heterotransfusion is accompanied by hypocoagulation and stimulation of fibrinolysis in both intact and thymectomized rats. At the same time fibrinolysis in thymectomized rats is stimulated to a lesser degree than in intact animals. Preinjection into thymectomized rats of the thymus low-molecular factor thymaline over one week does not only make blood coagulation and fibrinolysis return to normal but also leads to adequate changes in the hemostatic system in response to heterotransfusion.  相似文献   

9.
Clotting and fibrinolysis are initiated simultaneously in vivo, and fibrinolysis usually occurs without any individualized lysis front (intrinsic fibrinolysis). We have developed a novel model to assess whether morphological changes resulting from intrinsic fibrinolysis are similar to those previously reported at the lysis front using externally applied lytic agents. Fibrin assembly and fibrinolysis were followed in real-time by confocal microscopy using gold-labeled fibrinogen molecules. An increase in fiber absorbance (30%, p < 0.01) and a decrease in fiber diameter (60%, p < 0.01) due to the ongoing accumulation and packing of fibrin molecules were the most significant detectable features occurring during fibrin assembly. Similar features with a similar magnitude were observed during fibrin dissolution, but in the reverse order and with a 3-fold increase in duration. Then, lysing fibers were progressively transected laterally, and thinner fibers were cleaved at a 2.5-fold faster rate than thicker fibers (p < 0.001). Frayed lysing fibers were seen to interact progressively with adjoining fibers (agglomeration), leading to a 76 and 88% increase in the network pore diameter (p < 0.05) and fiber diameter (p < 0.01), respectively. At the maximum decrease in fiber absorbance (46%, p < 0.05), the network suddenly collapsed with the release of large fragments that gradually vanished. Morphological changes of fibrin that occur during intrinsic fibrinolysis are similar as those observed next to the lysis front, although they are not restricted spatially to the clot/surrounding milieu interface but are observed through the entire clot.  相似文献   

10.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) is intrinsically unstable, a property that complicates the study of its role in regulating fibrinolysis. To investigate the effect of basic carboxypeptidases on fibrinolysis under conditions of constant carboxypeptidase activity, we employed pancreatic carboxypeptidase B (CPB), a homologous, stable basic carboxypeptidase, as a surrogate for TAFIa. Clots formed from TAFI-depleted plasma or from purified components were supplemented with tissue-type plasminogen activator and either CPB or TAFIa. The clot lysis data indicate that the down-regulation of fibrinolysis mediated by basic carboxypeptidases involves a threshold mechanism. At carboxypeptidase concentrations above the threshold, plasminogen activation is maintained in a fully down-regulated state; experiments in plasma showed that fibrinolysis is essentially halted by saturating concentrations of TAFIa and that fibrinolysis can be prolonged more than 45-fold by a stable carboxypeptidase. The threshold carboxypeptidase concentration was dependent on tissue-type plasminogen activator and antiplasmin concentrations, indicating that the threshold is determined by the steady-state plasmin concentration. Although obvious with CPB, the threshold was masked by the intrinsic instability of TAFIa and became apparent only when the effect of TAFIa was investigated over the picomolar concentration range. Because of the threshold effect and the instability of TAFIa, exponential increases in TAFIa concentration generate linear increases in lysis time. A model relating lysis time to TAFIa concentration, TAFIa half-life, and the threshold concentration of TAFIa is provided. The threshold effect has potentially important implications regarding the role of TAFIa and the regulation of clot lysis in vivo.  相似文献   

11.
Magnetoelastic transduction has been used to detect and monitor the viscosity changes that occur during the biological reactions of coagulation and fibrinolysis. Magnetoelastic sensors can be used, because the characteristic resonance frequency of the magnetoelastic strip shifts in response to the changes in fluid viscosity. At a set frequency, the output signal can be obtained over time to develop a coagulation and/or dissolution profile, which display the change in viscosity of a plasma sample that has undergone either coagulation or fibrinolysis. For coagulation screening, an exogenous tissue factor is added to an anticoagulated plasma sample to initiate coagulation. Further studies were performed to investigate fibrinolysis through the addition of plasmin. Plasmin is used in two different ways-as a competitive inhibitor before the initiation of clotting and also as a protease to dissolve the previously formed clot. This method is a viable option for the monitoring of processes that are paramount to maintaining hemostasis.  相似文献   

12.
We have previously shown functional differences in fibrinogen from hyperhomocysteinemic rabbits compared to that in control rabbits. This acquired dysfibrinogenemia is characterized by fibrin clots that are composed of abnormally thin, tightly packed fibers with increased resistance to fibrinolysis. Homocysteine thiolactone is a metabolite of homocysteine (Hcys) that can react with primary amines. Recent evidence suggests that Hcys thiolactone-lysine adducts form in vivo. We now demonstrate that the reaction of Hcys thiolactone with purified fibrinogen in vitro produces fibrinogen (Hcys fibrinogen) with functional properties that are strikingly similar to those we have observed in homocysteinemic rabbits. Fibrinogen purified from homocysteinemic rabbits and Hcys fibrinogen are similar in that (1) they both form clots composed of thinner, more tightly packed fibers than their respective control rabbit and human fibrinogens; (2) the clot structure could be made to be more like the control fibrinogens by increased calcium; and (3) they both form clots that are more resistant to fibrinolysis than those formed by the control fibrinogens. Further characterization of human fibrinogens showed that Hcys fibrin had similar plasminogen binding to that of the control and an increased capacity for binding tPA. However, tPA activation of plasminogen on Hcys fibrin was slower than that of the control. Mass spectrometric analysis of Hcys fibrinogen revealed twelve lysines that were homocysteinylated. Several of these are close to tPA and plasminogen binding sites. Lysines are major binding sites for fibrinolytic enzymes and are also sites of plasmin cleavage. Thus, modification of lysines in fibrinogen could plausibly lead to impaired fibrinolysis. We hypothesize that the modification of lysine by Hcys thiolactone might occur in vivo, lead to abnormal resistance of clots to lysis, and thereby contribute to the prothrombotic state associated with homocysteinemia.  相似文献   

13.
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) plays a significant role in the prolongation of fibrinolysis. During fibrinolysis, plasminogen is activated to plasmin, which lyses a clot by cleaving fibrin after selected arginine and lysine residues. TAFIa attenuates fibrinolysis by removing the exposed C-terminal lysine residues. It was recently reported that TAFI zymogen possesses sufficient carboxypeptidase activity to attenuate fibrinolysis through a mechanism similar to TAFIa. Here, we show with a recently developed TAFIa assay that when thrombin is used to clot TAFI-deficient plasma supplemented with TAFI, there is some TAFI activation. The extent of activation was dependent upon the concentration of zymogen present in the plasma, and lysis times were prolonged by TAFIa in a concentration-dependent manner. Potato tuber carboxypeptidase inhibitor, an inhibitor of TAFIa but not TAFI, abolished the prolongation of lysis in TAFI-deficient plasma supplemented with TAFI zymogen. In addition, TAFIa but not TAFI catalyzed release of plasminogen bound to soluble fibrin degradation products. The data presented confirm that TAFI zymogen is effective in cleaving a small substrate but does not play a role in the attenuation of fibrinolysis because of its inability to cleave plasmin-modified fibrin degradation products.  相似文献   

14.
A modern data review on the importance of fibrinolysis system is given. A considerable success has been scored during the study of molecular parameters of fibrinolysis system: the plasminogen, plasmin, its inhibitors, plasminogen activators and the mechanism of activation system have been characterized. The entrance of A, K, C, P and PP vitamins has been established to be necessary for the normal functioning of the fibrinolysis system; the dependence of the blood fibrinolytic activity upon the initial plasminogen content and concentration of its activators in blood has been revealed. The plasminogen activator depletion in tissues has been shown to be one of the reasons of some pathological states development, especially at cardiovascular diseases. The increase of fibrinolysis level by the active fibrinolytic ferment injection in blood has a medical effect at thrombosis. The ferment fibrinolysin received in the laboratory is successfully used in clinical practice. Some other activators of fibrinolytic system: tricholysine and longolytin from the culture of saprophyte fungi, plasminogen activator from the pig heart and the cells culture of the calf kidney have been received and are being studied.  相似文献   

15.
Fatigue, polarization level and excitability of striated muscle fibers from ischemia zone were studied on experimental rats under the tourniquet shock. It was established that violation-mediated contraction and fatigue of skeletal muscle was associated with a decrease in a number of muscle fibers with high level of MPP. The article discussed the mechanisms of fatigue and depolarization of muscle fibres in tourniquet shock.  相似文献   

16.
Fibrin/fibrinogen degradation products in the serum of 169 healthy pregnant and 43 healthy non-pregnant subjects of a similar age group showed a significant increase throughout pregnancy, the highest levels being obtained in the third trimester. There was no correlation with plasma fibrinogen levels or euglobulin lysis times. Though these changes may be due to other alterations in pregnancy not primarily associated with fibrinolysis, it is possible that actual fibrinolysis is not decreased in late pregnancy, as has been previously asssumed.  相似文献   

17.
18.
《Biophysical journal》2022,121(17):3271-3285
Thrombosis, resulting in occlusive blood clots, blocks blood flow to downstream organs and causes life-threatening conditions such as heart attacks and strokes. The administration of tissue plasminogen activator (t-PA), which drives the enzymatic degradation (fibrinolysis) of these blood clots, is a treatment for thrombotic conditions, but the use of these therapeutics is often limited due to the time-dependent nature of treatment and their limited success. We have shown that clot contraction, which is altered in prothrombotic conditions, influences the efficacy of fibrinolysis. Clot contraction results in the volume shrinkage of blood clots, with the redistribution and densification of fibrin and platelets on the exterior of the clot and red blood cells in the interior. Understanding how these key structural changes influence fibrinolysis can lead to improved diagnostics and patient care. We used a combination of mathematical modeling and experimental methodologies to characterize the process of exogenous delivery of t-PA (external fibrinolysis). A three-dimensional (3D) stochastic, multiscale model of external fibrinolysis was used to determine how the structural changes that occur during the process of clot contraction influence the mechanism(s) of fibrinolysis. Experiments were performed based on modeling predictions using pooled human plasma and the external delivery of t-PA to initiate lysis. Analysis of fibrinolysis simulations and experiments indicate that fibrin densification makes the most significant contribution to the rate of fibrinolysis compared with the distribution of components and degree of compaction (p < 0.0001). This result suggests the possibility of a certain fibrin density threshold above which t-PA effective diffusion is limited. From a clinical perspective, this information can be used to improve on current therapeutics by optimizing timing and delivery of lysis agents.  相似文献   

19.
The intensity of free radical processes and the regulation of NADP-isocitrate dehydrogenase (EC 1.1.1.42; NADP-IDH) activity have been studied in the cytoplasmic fraction of normal and ischemized rat myocardium. Chemiluminescence parameters, such as the light sum (S) of slow flash and the tangent of the kinetic curve slope angle (tan1), which characterize the intensity of free radical processes, were increased in ischemia 2.1- and 20.0-fold, respectively. The slow flash intensity (Imax) was increased 22-fold. The contents of lipid peroxidation products–diene conjugates and malonic dialdehyde–were increased 11.9- and 4.7-fold, respectively, suggesting pronounced oxidative stress. Using homogenous enzyme preparations of NADP-IDH isolated from the normal and experimentally ischemized rat myocardium, a number of catalytic properties of the enzyme were characterized for normal and pathologic conditions. NADP-IDH from the normal and ischemized myocardium had the same electrophoretic mobility and was regulated similarly by Fe2+, Cu2+, Zn2+, and also with succinate and fumarate. However, under normal and pathologic conditions NADP-IDH was different in the affinity for substrates and in the sensitivity to inhibitory effects of hydrogen peroxide, reduced glutathione, and of Ca2+. The degree of synergy in the enzyme inhibition with Fe2+ and H2O2 was less pronounced in ischemia. The inhibitory effect of the reaction product 2-oxoglutarate was higher under normal conditions than in ischemia (the K i values were 0.22 and 0.75 mM, respectively). The specific features of the NADP-IDH regulation in ischemia are suggested to promote the stimulation of the enzyme functioning during increased level of free radical processes, and this seems to be important for NADPH supplying for the glutathione reductase/glutathione peroxidase antioxidant system of cardiomyocytes.  相似文献   

20.
An axisymmetric finite element model of cuff on limb was developed. The model was used to simulate a clinical experiment by others in which the fluid pressure was measured at various points under a blood pressure cuff; the distribution of calculated hydrostatic stress was consistent with the clinical results. Simulations involving varying degrees of rounding at the edges of a tourniquet suggested that ensuring such rounding decreases maximum octahedral shear stress; this finding was consistent with studies by others using a two-dimensional physical model. The calculated stresses were highest at the tourniquet edges; this was consistent with nerve conduction and photomicrographic studies by others of damage caused by tourniquet use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号