共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Langheim S Yu L von Bergmann K Lütjohann D Xu F Hobbs HH Cohen JC 《Journal of lipid research》2005,46(8):1732-1738
The major pathway for the removal of cholesterol from the body is via secretion into the bile. Three members of the ATP binding cassette (ABC) family, ABCG5 (G5), ABCG8 (G8), and ABCB4 (MDR2), are required for the efficient biliary export of sterols. Here, we examined the interdependence of these three ABC transporters for biliary sterol secretion. Biliary lipid levels in mice expressing no MDR2 (Mdr2-/- mice) were compared with those of Mdr2-/- mice expressing 14 copies of a human G5 (hG5) and hG8 transgene (Mdr2-/-;hG5G8Tg mice). Mdr2-/- mice had only trace amounts of biliary cholesterol and phospholipids. The Mdr2-/-;hG5G8Tg mice had biliary cholesterol levels as low as those of Mdr2-/- mice. Thus, MDR2 expression is required for G5G8-mediated biliary sterol secretion. To determine whether the reduction in fractional absorption of dietary sterols associated with G5G8 overexpression is secondary to the associated increase in biliary cholesterol, we compared the fractional absorption of sterols in Mdr2-/-;hG5G8Tg and hG5G8Tg animals. Inactivation of MDR2 markedly attenuated the reduction in fractional sterol absorption associated with G5G8 overexpression. These results are consistent with the notion that increased biliary cholesterol secretion contributes to the reduction in fractional sterol absorption associated with G5G8 overexpression. 相似文献
3.
Dubrac S Lear SR Ananthanarayanan M Balasubramaniyan N Bollineni J Shefer S Hyogo H Cohen DE Blanche PJ Krauss RM Batta AK Salen G Suchy FJ Maeda N Erickson SK 《Journal of lipid research》2005,46(1):76-85
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being generally more severely affected. Thus, both cyp27A genotype and gender affected the regulation of hepatic bile acid, cholesterol, and fatty acid metabolism. 相似文献
4.
Neutral cholesteryl ester hydrolase (CEH)-mediated hydrolysis of cellular cholesteryl esters (CEs) is required not only to generate free cholesterol (FC) for efflux from macrophages but also to release FC from lipoprotein-delivered CE in the liver for bile acid synthesis or direct secretion into the bile. We hypothesized that hepatic expression of CEH would regulate the hydrolysis of lipoprotein-derived CE and enhance reverse cholesterol transport (RCT). Adenoviral-mediated CEH overexpression led to a significant increase in bile acid output. To assess the role of hepatic CEH in promoting flux of cholesterol from macrophages to feces, cholesterol-loaded and [(3)H]cholesterol-labeled J774 macrophages were injected intraperitoneally into mice and the appearance of [(3)H]cholesterol in gallbladder bile and feces over 48 h was quantified. Mice overexpressing CEH had significantly higher [(3)H]cholesterol radiolabel in bile and feces, and it was associated with bile acids. This CEH-mediated increased movement of [(3)H]cholesterol from macrophages to bile acids and feces was significantly attenuated in SR-BI(-/-) mice. These studies demonstrate that similar to macrophage CEH that rate-limits the first step, hepatic CEH regulates the last step of RCT by promoting the flux of cholesterol entering the liver via SR-BI and increasing hepatic bile acid output. 相似文献
5.
6.
Yuhuan Wang Xiaoxi Liu Sonja S. Pijut Jianing Li Jamie Horn Emily M. Bradford Markos Leggas Terrence A. Barrett Gregory A. Graf 《Journal of lipid research》2015,56(4):810-820
Previous studies suggest an interdependent relationship between liver and intestine for cholesterol elimination from the body. We hypothesized that a combination of ursodiol (Urso) and ezetimibe (EZ) could increase biliary secretion and reduce cholesterol reabsorption, respectively, to promote cholesterol excretion. Treatment with Urso increased hepatic ABCG5 ABCG8 (G5G8) protein and both biliary and fecal sterols in a dose-dependent manner. To determine whether the drug combination (Urso-EZ) further increased cholesterol excretion, mice were treated with Urso alone or in combination with two doses of EZ. EZ produced an additive and dose-dependent increase in fecal neutral sterol (FNS) elimination in the presence of Urso. Finally, we sequentially treated wide-type and G5G8-deficient mice with Urso and Urso-EZ to determine the extent to which these effects were G5G8 dependent. Although biliary and FNS were invariably lower in G5G8 KO mice, the relative increase in FNS following treatment with Urso alone or the Urso-EZ combination was not affected by genotype. In conclusion, Urso increases G5G8, biliary cholesterol secretion, and FNS and acts additively with EZ to promote fecal sterol excretion. However, the stimulatory effect of these agents was not G5G8 dependent. 相似文献
7.
8.
Sané AT Sinnett D Delvin E Bendayan M Marcil V Ménard D Beaulieu JF Levy E 《Journal of lipid research》2006,47(10):2112-2120
9.
Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2 总被引:2,自引:0,他引:2
Temel RE Lee RG Kelley KL Davis MA Shah R Sawyer JK Wilson MD Rudel LL 《Journal of lipid research》2005,46(11):2423-2431
The process of cholesterol absorption has yet to be completely defined at the molecular level. Because of its ability to esterify cholesterol for packaging into nascent chylomicrons, ACAT2 plays an important role in cholesterol absorption. However, it has been found that cholesterol absorption is not completely inhibited in ACAT2-deficient (ACAT2 KO) mice. Because ABCA1 mRNA expression was increased 3-fold in the small intestine of ACAT2 KO mice, we hypothesized that ABCA1-dependent cholesterol efflux sustains cholesterol absorption in the absence of ACAT2. To test this hypothesis, cholesterol absorption was measured in mice deficient in both ABCA1 and ACAT2 (DKO). Compared with wild-type, ABCA1 KO, or ACAT2 KO mice, DKO mice displayed the lowest level of cholesterol absorption. The concentrations of hepatic free and esterified cholesterol and gallbladder bile cholesterol were significantly reduced in DKO compared with wild-type and ABCA1 KO mice, although these measures of hepatic cholesterol metabolism were very similar in DKO and ACAT2 KO mice. We conclude that ABCA1, especially in the absence of ACAT2, can have a significant effect on cholesterol absorption, although ACAT2 has a more substantial role in this process than ABCA1. 相似文献
10.
Yvan-Charvet L Pagler TA Wang N Senokuchi T Brundert M Li H Rinninger F Tall AR 《Journal of lipid research》2008,49(1):107-114
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux. 相似文献
11.
Increased expression of LXR alpha, ABCG5, ABCG8, and SR-BI in the liver from normolipidemic, nonobese Chinese gallstone patients 总被引:3,自引:0,他引:3
Jiang ZY Parini P Eggertsen G Davis MA Hu H Suo GJ Zhang SD Rudel LL Han TQ Einarsson C 《Journal of lipid research》2008,49(2):464-472
Cholesterol supersaturation of bile is one prerequisite for gallstone formation. In the present study of Chinese patients with gallstones, we investigated whether this phenomenon was correlated with the hepatic expression of genes participating in the metabolism of cholesterol and bile acids. Twenty-two nonobese, normolipidemic patients (female-male, 11:11) with gallstones were investigated with 13 age- and body mass index-matched gallstone-free controls (female-male, 10:3). The bile from the gallstone patients had higher cholesterol saturation than that from the controls. The mRNA levels of ABCG5, ABCG8, and liver X receptor alpha (LXRalpha) in the gallstone patients were increased by 51, 59, and 102%, respectively, and significantly correlated with the molar percentage of biliary cholesterol and cholesterol saturation index (CSI). The mRNA and protein levels of the hepatic scavenger receptor class B type I (SR-BI) were increased, and a significant correlation was found between the protein levels and the CSI. No differences were recorded between the two groups concerning the hepatic synthesis of cholesterol, bile acids, and esterification of cholesterol. Our results suggest that the upregulation of ABCG5/ABCG8 in gallstone patients, possibly mediated by increased LXRalpha, may contribute to the cholesterol supersaturation of bile. Our data are consistent with the possibility that increased amounts of biliary cholesterol may originate from plasma HDL cholesterol by enhanced transfer via SR-BI. 相似文献
12.
David V. Nguyen Victor A. Drover Martin Knopfel Padmaja Dhanasekaran Helmut Hauser Michael C. Phillips 《Journal of lipid research》2009,50(11):2235-2244
To learn more about how the step of cholesterol uptake into the brush border membrane (BBM) of enterocytes influences overall cholesterol absorption, we measured cholesterol absorption 4 and 24 h after administration of an intragastric bolus of radioactive cholesterol in mice with scavenger receptor class B, type 1 (SR-BI) and/or cluster determinant 36 (CD36) deleted. The cholesterol absorption efficiency is unaltered by deletion of either one or both of the receptors. In vitro determinations of the cholesterol uptake specific activity of the BBM from the mice reveal that the scavenger receptors facilitate cholesterol uptake into the proximal BBM. It follows that cholesterol uptake into the BBM is not normally rate-limiting for the cholesterol absorption process in vivo; a subsequent step, such as NPC1L1-mediated transfer from the BBM into the interior of the enterocyte, is rate-limiting. The absorption of dietary cholesterol after 4 h in mice lacking SR-BI and/or CD36 and fed a high-fat/high-cholesterol diet is delayed to more distal regions of the small intestine. This effect probably arises because ATP binding cassette half transporters G5 and G8-mediated back flux of cholesterol from the BBM to the lumen of the small intestine limits absorption and causes the local cholesterol uptake facilitated by SR-BI and CD36 to become rate-limiting under this dietary condition. 相似文献
13.
Yan J. Jiang Biao Lu Elizabeth J. Tarling Peggy Kim M-Q. Man Debbie Crumrine Peter A. Edwards Peter M. Elias Kenneth R. Feingold 《Journal of lipid research》2010,51(11):3185-3195
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion. 相似文献
14.
Arne Dikkers Wijtske Annema Jan Freark de Boer Jahangir Iqbal M. Mahmood Hussain Uwe J. F. Tietge 《Journal of lipid research》2014,55(5):816-825
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp−/−) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp−/− mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp−/− mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT. 相似文献
15.
Natalie Fournier Nesrine AttiaDelphine Rousseau-Ralliard Benoît VedieFrédéric Destaillats Alain Grynberg Jean-Louis Paul 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(2):303-312
Consumption of trans fatty acids (TFA) increase cardiovascular risk more than do saturated FA, but the mechanisms explaining their atherogenicity are still unclear. We investigated the impact of membrane incorporation of TFA on cholesterol efflux by exposing J774 mouse macrophages or human monocyte-derived macrophages (HMDM) to media enriched or not (standard medium) with industrially produced elaidic (trans-9 18:1) acid, naturally produced vaccenic (trans-11 18:1) acid (34 h, 70 μM) or palmitic acid. In J774 macrophages, elaidic and palmitic acid, but not vaccenic acid, reduced ABCA1-mediated efflux by ~ 23% without affecting aqueous diffusion, SR-BI or ABCG1-mediated pathways, and this effect was maintained in cholesterol-loaded cells. The impact of elaidic acid on the ABCA1 pathway was weaker in cholesterol-normal HMDM, but elaidic acid induced a strong reduction of ABCA1-mediated efflux in cholesterol-loaded cells (− 36%). In J774 cells, the FA supplies had no impact on cellular free cholesterol or cholesteryl ester masses, the abundance of ABCA1 mRNA or the total and plasma membrane ABCA1 protein content. Conversely, TFA or palmitic acid incorporation induced strong modifications of the membrane FA composition with a decrease in the ratio of (cis-monounsaturated FA + polyunsaturated FA):(saturated FA + TFA), with elaidic and vaccenic acids representing each 20% and 13% of the total FA composition, respectively. Moreover, we demonstrated that cellular ATP was required for the effect of elaidic acid, suggesting that it contributes to atherogenesis by impairing ABCA1-mediated cholesterol efflux in macrophages, likely by decreasing the membrane fluidity, which could thereby reduce ATPase activity and the function of the transporter. 相似文献
16.
Monika Sharma Anne Von Zychlinski-Kleffmann Carolyn M. Porteous Gregory T. Jones Michael J. A. Williams Sally P. A. McCormick 《Journal of lipid research》2015,56(7):1318-1328
Elevated levels of lipoprotein (a) [Lp(a)] are a well-established risk factor for developing CVD. While Lp(a) levels are thought to be independent of other plasma lipoproteins, some trials have reported a positive association between Lp(a) and HDL. Whether Lp(a) has a direct effect on HDL is not known. Here we investigated to determine whether Lp(a) had any effect on the ABCA1 pathway of HDL production in liver cells. Incubation of HepG2 cells with Lp(a) upregulated the PPARγ protein by 1.7-fold and the liver X receptor α protein by 3-fold. This was accompanied by a 1.8-fold increase in ABCA1 protein and a 1.5-fold increase in cholesterol efflux onto apoA1. We showed that Lp(a) was internalized by HepG2 cells, however, the ABCA1 response to Lp(a) was mediated by the selective uptake of oxidized phospholipids (oxPLs) from Lp(a) via the scavenger receptor-B1 and not by Lp(a) internalization per se. We conclude that there is a biological connection between Lp(a) and HDL through the ability of Lp(a)’s oxPLs to upregulate HDL biosynthesis. 相似文献
17.
Honda A Salen G Matsuzaki Y Batta AK Xu G Hirayama T Tint GS Doy M Shefer S 《Journal of lipid research》2005,46(2):287-296
Cerebrotendinous xanthomatosis (CTX), sterol 27-hydroxylase (CYP27A1) deficiency, is associated with markedly reduced chenodeoxycholic acid (CDCA), the most powerful activating ligand for farnesoid X receptor (FXR). We investigated the effects of reduced CDCA on FXR target genes in humans. Liver specimens from an untreated CTX patient and 10 control subjects were studied. In the patient, hepatic CDCA concentration was markedly reduced but the bile alcohol level exceeded CDCA levels in control subjects (73.5 vs. 37.8 +/- 6.2 nmol/g liver). Cholesterol 7alpha-hydroxylase (CYP7A1) and Na+/taurocholate-cotransporting polypeptide (NTCP) were upregulated 84- and 8-fold, respectively. However, small heterodimer partner (SHP) and bile salt export pump were normally expressed. Marked CYP7A1 induction with normal SHP expression was not explained by the regulation of liver X receptor alpha (LXRalpha) or pregnane X receptor. However, another nuclear receptor, hepatocyte nuclear factor 4alpha (HNF4alpha), was induced 2.9-fold in CTX, which was associated with enhanced mRNA levels of HNF4alpha target genes, CYP7A1, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase, CYP27A1, and NTCP. In conclusion, the coordinate regulation of FXR target genes was lost in CTX. The mechanism of the disruption may be explained by a normally stimulated FXR pathway attributable to markedly increased bile alcohols with activation of HNF4alpha caused by reduced bile acids in CTX liver. 相似文献
18.
目的探讨降脂益生菌(鼠李糖乳杆菌DM9054和植物乳杆菌86066联合制剂)对非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)小鼠胆汁酸代谢及转运的影响和可能机制。方法 18只雄性FXR-/-小鼠随机分为3组(n=6):正常饮食组、高脂饮食组和高脂饮食+降脂益生菌组。其中正常饮食组给予普通饮食和生理盐水灌胃,高脂饮食组给予高脂饮食和生理盐水灌胃,高脂饮食+降脂益生菌组给予高脂饮食和降脂益生菌灌胃。所有小鼠干预12周,处死小鼠1周前行胰岛素耐量试验和腹腔注射葡萄糖耐量试验。小鼠处死后自动生化分析仪检测血脂、胆汁酸及肝功能指标;RT-PCR检测肝脏和回肠组织炎症因子相对表达量;HE染色评估肝脏和回肠组织病理情况;Western blot检测法尼醇受体(Farnesoid X receptor, FXR)通路中的成纤维细胞生长因子15(fibroblast growth factor 15,FGF15)、成纤维细胞生长因子受体4(fibroblast growth factor receptor 4,FGFR4)和小分子异源二聚体(short heterodimer partner, SHP)、胆汁酸合成限速酶胆固醇7α-羟化酶(cholesterol 7α-hydroxylase, CYP7A1)及胆汁酸转运相关的胆盐输出泵(bile salt export pump, BSEP)的蛋白表达。结果和高脂饮食组相比,高脂饮食+降脂益生菌组小鼠血清中胆汁酸含量明显下降(P=0.000 1),FGF15、FGFR4和BSEP蛋白表达水平升高(P=0.009 7、0.024 2、0.000 1),CYP7A1的蛋白表达水平降低(P=0.006 9)。此外,通过降脂益生菌干预还明显改善了高脂饮食FXR-/-小鼠的糖脂代谢紊乱(P=0.002 4)、肝脏脂肪变性、肝脏和回肠组织炎症(P=0.013 8、0.000 1、0.000 1)以及肠黏膜屏障功能(P=0.014 2)。结论降脂益生菌具有类似选择性肠道FXR激动剂的作用,能够通过调控肠道FXR-FGF15通路改善胆汁酸的代谢及转运,进而缓解高脂饮食FXR-/-小鼠的NAFLD。 相似文献
19.
20.
This study uses the mouse to explore the role of ABCA1 in the movement of this cholesterol from the peripheral organs to the endocrine glands for hormone synthesis and liver for excretion. The sterol pool in all peripheral organs was constant and equaled 2,218 and 2,269 mg/kg, respectively, in abca1+/+ and abca1−/− mice. Flux of cholesterol from these tissues equaled the rate of synthesis plus the rate of LDL-cholesterol uptake and was 49.9 mg/day/kg in control animals and 62.0 mg/day/kg in abca1−/− mice. In the abca1+/+ animals, this amount of cholesterol moved from HDL into the liver for excretion. In the abca1−/− mice, the cholesterol from the periphery also reached the liver but did not use HDL. Fecal excretion of cholesterol was just as high in abac1−/− mice (198 mg/day/kg) as in the abac1+/+ animals (163 mg/day/kg), although the abac1−/− mice excreted relatively more neutral than acidic sterols. This study established that ABCA1 plays essentially no role in the turnover of cholesterol in peripheral organs or in the centripetal movement of this sterol to the endocrine glands, liver, and intestinal tract for excretion. 相似文献