首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently existing theories predict that because deleterious mutations accumulate at a higher rate, selfing populations suffer from more intense genetic degradation relative to outcrossing populations. This prediction may not always be true when we consider a potential difference in deleterious mutation rate between selfers and outcrossers. By analyzing the evolutionary stability of selfing and outcrossing in an infinite population, we found that the genome-wide deleterious mutation rate would be lower in selfing than in outcrossing organisms. When this difference in mutation rate was included in simulations, we found that in a small population, mutations accumulated more slowly under selfing rather than outcrossing. This result suggests that under frequent and intense bottlenecks, a selfing population may have a lower risk of genetic extinction than an outcrossing population.  相似文献   

2.
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

3.
Estimates of inbreeding depression obtained from the literature were used to evaluate the association between inbreeding depression and the degree of self-fertilization in natural plant populations. Theoretical models predict that the magnitude of inbreeding depression will decrease with inbreeding as deleterious recessive alleles are expressed and purged through selection. If selection acts differentially among life history stages and deleterious effects are uncorrelated among stages, then the timing of inbreeding depression may also evolve with inbreeding. Estimates of cumulative inbreeding depression and stage-specific inbreeding depression (four stages: seed production of parent, germination, juvenile survival, and growth/reproduction) were compiled for 79 populations (using means of replicates, N = 62) comprising 54 species from 23 families of vascular plants. Where available, data on the mating system also were collected and used as a measure of inbreeding history. A significant negative correlation was found between cumulative inbreeding depression and the primary selfing rate for the combined sample of angiosperms (N = 35) and gymnosperms (N = 9); the correlation was significant for angiosperms but not gymnosperms examined separately. The average inbreeding depression in predominantly selfing species (δ = 0.23) was significantly less (43%) than that in predominantly outcrossing species (δ = 0.53). These results support the theoretical prediction that selfing reduces the magnitude of inbreeding depression. Most self-fertilizing species expressed the majority of their inbreeding depression late in the life cycle, at the stage of growth/reproduction (14 of 18 species), whereas outcrossing species expressed much of their inbreeding depression either early, at seed production (17 of 40 species), or late (19 species). For species with four life stages examined, selfing and outcrossing species differed in the magnitude of inbreeding depression at the stage of seed production (selfing δ = 0.05, N = 11; outcrossing δ = 0.32, N = 31), germination (selfing δ = 0.02, outcrossing δ = 0.12), and survival to reproduction (selfing δ = 0.04, outcrossing δ = 0.15), but not at growth and reproduction (selfing δ = 0.21, outcrossing δ = 0.27); inbreeding depression in selfers relative to outcrossers increased from early to late life stages. These results support the hypothesis that most early acting inbreeding depression is due to recessive lethals and can be purged through inbreeding, whereas much of the late-acting inbreeding depression is due to weakly deleterious mutations and is very difficult to purge, even under extreme inbreeding.  相似文献   

4.
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.  相似文献   

5.
Sankar Subramanian 《Genetics》2013,193(3):995-1002
Previous studies observed a higher ratio of divergences at nonsynonymous and synonymous sites (ω = dN/dS) in species with a small population size compared to that estimated for those with a large population size. Here we examined the theoretical relationship between ω, effective population size (Ne), and selection coefficient (s). Our analysis revealed that when purifying selection is high, ω of species with small Ne is much higher than that of species with large Ne. However the difference between the two ω reduces with the decline in selection pressure (s → 0). We examined this relationship using primate and rodent genes and found that the ω estimated for highly constrained genes of primates was up to 2.9 times higher than that obtained for their orthologous rodent genes. Conversely, for genes under weak purifying selection the ω of primates was only 17% higher than that of rodents. When tissue specificity was used as a proxy for selection pressure we found that the ω of broadly expressed genes of primates was up to 2.1-fold higher than that of their rodent counterparts and this difference was only 27% for tissue specific genes. Since most of the nonsynonymous mutations in constrained or broadly expressed genes are deleterious, fixation of these mutations is influenced by Ne. This results in a higher ω of these genes in primates compared to those from rodents. Conversely, the majority of nonsynonymous mutations in less-constrained or tissue-specific genes are neutral or nearly neutral and therefore fixation of them is largely independent of Ne, which leads to the similarity of ω in primates and rodents.  相似文献   

6.
Selfing species are prone to extinction, possibly because highly selfing populations can suffer from a continuous accumulation of deleterious mutations, a process analogous to Muller's ratchet in asexual populations. However, current theory provides little insight into which types of genes are most likely to accumulate deleterious alleles and what environmental circumstances may accelerate genomic degradation. Here, we investigate temporal changes in the environment that cause fluctuations in the strength of purifying selection. We simulate selfing populations with genomes containing a mixture of loci experiencing constant selection and loci experiencing selection that fluctuates in strength (but not direction). Even when both types of loci experience the same average strength of selection, loci under fluctuating selection contribute disproportionately more to deleterious mutation accumulation. Moreover, the presence of loci experiencing fluctuating selection in the genome increases the deleterious fixation rate at loci under constant selection; under most realistic scenarios, this effect of linked selection can be attributed to a reduction in Ne. Fluctuating selection is particularly injurious when selective environments are strongly autocorrelated over time and when selection is concentrated into rare bouts of strong selection. These results imply that loci under fluctuating selection are likely important drivers of extinction in selfing species.  相似文献   

7.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here, we analyze a model for the fixation probability of deleterious mutants that hitchhike with selective sweeps in diploid, partially selfing populations. Approximate analytical solutions show that, conditional on the sweep not being lost by drift, higher inbreeding rates increase the fixation probability of the deleterious allele, due to the resulting reduction in polymorphism and effective recombination. When extending the analysis to consider a distribution of deleterious alleles, as well as the average fitness increase after a sweep, we find that beneficial alleles generally need to be more recessive than the previously assumed dominance threshold (h < 1/2) for selfing to be beneficial from one-locus theory. Our results highlight that recombination aiding the efficiency of selection on multiple loci amplifies the fitness benefits of outcrossing over selfing, compared to results obtained from one-locus theory. This effect additionally increases the parameter range under which obligate outcrossing is beneficial over partial selfing.  相似文献   

8.

Background and Aims

How and why plants evolve to become selfing is a long-standing evolutionary puzzle. The transition from outcrossing to highly selfing is less well understood in self-compatible (SC) mixed-mating (MM) species where potentially subtle interactions between floral phenotypes and the environment are at play. We examined floral morphological and developmental traits across an entire SC MM genus, Collinsia, to determine which, if any, predict potential autonomous selfing ability when pollinators are absent (AS) and actual selfing rates in the wild, sm, and to best define the selfing syndrome for this clade.

Methods

Using polymorphic microsatellite markers, we obtained 30 population-level estimates of sm across 19 Collinsia taxa. Species grand means for the timing of herkogamy (stigma–anther contact) and dichogamy (stigmatic receptivity, SR), AS, floral size, longevity and their genetic correlations were quantified for 22 taxa.

Key Results

Species fell into discrete selfing and outcrossing groups based on floral traits. Loss of dichogamy defines Collinsia''s selfing syndrome. Floral size, longevity and herkogamy also differ significantly between these groups. Most taxa have high AS rates (>80 %), but AS is uncorrelated with any measured trait. In contrast, sm is significantly correlated only with SR. High variance in sm was observed in the two groups.

Conclusions

Collinsia species exhibit clear morphological and developmental traits diagnostic of ‘selfing’ or ‘outcrossing’ groups. However, many species in both the ‘selfing’ and the ‘outcrossing’ groups were MM, pointing to the critical influence of the pollination environment, the timing of AS and outcross pollen prepotency on sm. Flower size is a poor predictor of Collinsia species'' field selfing rates and this result may apply to many SC species. Assessment of the variation in the pollination environment, which can increase selfing rates in more ‘outcrossing’ species but can also decrease selfing rates in more ‘selfing’ species, is critical to understanding mating system evolution of SC MM taxa.  相似文献   

9.
Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.  相似文献   

10.
Background and AimsSelf-fertilization is often associated with ecological traits corresponding to the ruderal strategy, and selfers are expected to be less competitive than outcrossers, either because of a colonization/competition trade-off or because of the deleterious genetic effects of selfing. Range expansion could reduce further competitive ability while polyploidy could mitigate the effects of selfing. If pollinators are not limited, individual fitness is thus expected to be higher in outcrossers than in selfers and, within selfers, in polyploids than in diploids. Although often proposed in the botanical literature and also suggested by meta-analyses, these predictions have not been directly tested yet.MethodsIn order to compare fitness and the competitive ability of four Capsella species with a different mating system and ploidy level, we combined two complementary experiments. First, we carried out an experiment outdoors in north-west Greece, i.e. within the range of the obligate outcrossing species, C. grandiflora, where several life history traits were measured under two different disturbance treatments, weeded plots vs. unweeded plots. To better control competition and to remove potential effects of local adaptation of the outcrosser, we also performed a similar competition experiment but under growth chamber conditions.Key ResultsIn the outdoor experiment, disturbance of the environment did not affect the phenotype in any of the four species. For most traits, the obligate outcrossing species performed better than all selfing species. In contrast, polyploids did not survive or reproduce better than diploids. Under controlled conditions, as in the field experiment, the outcrosser had a higher fitness than selfing species and was less affected by competition. Finally, contrary to the outdoor experiment where the two behaved identically, polyploid selfers were less affected by competition than diploid selfes.ConclusionsIn the Capsella genus, selfing induces lower fitness than outcrossing and can also reduce competitive ability. The effect of polyploidy is, however, unclear. These results highlight the possible roles of ecological context in the evolution of selfing species.  相似文献   

11.
Whole-genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1–2 Million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two coresident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g., dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.  相似文献   

12.
Newly formed selfing lineages may express recessive genetic load and suffer inbreeding depression. This can have a genome-wide genetic basis, or be due to loci linked to genes under balancing selection. Understanding the genetic architecture of inbreeding depression is important in the context of the maintenance of self-incompatibility and understanding the evolutionary dynamics of S-alleles. We addressed this using North-American subspecies of Arabidopsis lyrata. This species is normally self-incompatible and outcrossing, but some populations have undergone a transition to selfing. The goals of this study were to: (1) quantify the strength of inbreeding depression in North-American populations of A. lyrata; and (2) disentangle the relative contribution of S-linked genetic load compared with overall inbreeding depression. We enforced selfing in self-incompatible plants with known S-locus genotype by treatment with CO2, and compared the performance of selfed vs outcrossed progeny. We found significant inbreeding depression for germination rate (δ=0.33), survival rate to 4 weeks (δ=0.45) and early growth (δ=0.07), but not for flowering rate. For two out of four S-alleles in our design, we detected significant S-linked load reflected by an under-representation of S-locus homozygotes in selfed progeny. The presence or absence of S-linked load could not be explained by the dominance level of S-alleles. Instead, the random nature of the mutation process may explain differences in the recessive deleterious load among lineages.  相似文献   

13.
14.
Self‐fertilization is hypothesized to be an evolutionary dead end because reversion to outcrossing can rarely happen, and selfing lineages are thought to rapidly become extinct because of limited potential for adaptation and/or accumulation of deleterious mutations. We tested these two assumptions by combining morphological characters and molecular‐evolution analyses in a tribe of hermaphroditic grasses (Triticeae). First, we determined the mating system of the 19 studied species. Then, we sequenced 27 protein‐coding loci and compared base composition and substitution patterns between selfers and outcrossers. We found that the evolution of the mating system is best described by a model including outcrossing‐to‐selfing transitions only. At the molecular level, we showed that regions of low recombination exhibit signatures of relaxed selection. However, we did not detect any evidence of accumulation of nonsynonymous substitutions in selfers compared to outcrossers. Additionally, we tested for the potential deleterious effects of GC‐biased gene conversion in outcrossing species. We found that recombination and not the mating system affected substitution patterns and base composition. We suggest that, in Triticeae, although recombination patterns have remained stable, selfing lineages are of recent origin and inbreeding may have persisted for insufficient time for differences between the two mating systems to evolve.  相似文献   

15.
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity versus genome-wide variability for the long-term viability of populations after bottlenecks and/or under high inbreeding is controversial. We tested the hypothesis that genome-wide inbreeding (estimated using microsatellites) should be more critical than MHC diversity alone in determining pathogen resistance in the self-fertilizing fish Kryptolebias marmoratus by analysing MHC diversity and parasite loads in natural and laboratory populations with different degrees of inbreeding. Both MHC and neutral diversities were lost after several generations of selfing, but we also found evidence of parasite selection acting on MHC diversity and of non-random loss of alleles, suggesting a possible selective advantage of those individuals with functionally divergent MHC, in accordance with the hypothesis of divergent allele advantage. Moreover, we found that parasite loads were better explained by including MHC diversity in the model than by genome-wide (microsatellites) heterozygosity alone. Our results suggest that immune-related overdominance could be the key in maintaining variables rates of selfing and outcrossing in K. marmoratus and other mixed-mating species.  相似文献   

16.
Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, random-mating monoecious populations can lead to mean extinction times less than a few hundred to a few thousand generations. Unlike the situation in obligate asexuals in which the mean time to extinction (t?e) increases more slowly than linearly with the population carrying capacity (K), t?e increases approximately exponentially with K in outcrossing sexual populations. The mean time to extinction for obligately selfing populations is shown to be equivalent to that for asexual populations of the same size, but with half the mutation rate and twice the mutational effect; this suggests that obligate selfing, like obligate asexuality, is inviable as a long-term reproductive strategy. Under all mating systems, the mean time to extinction increases relatively slowly with the logarithm of fecundity, and mutations with intermediate effects (similar to those observed empirically) cause the greatest risk of extinction. Because our analyses ignore sources of demographic and environmental stochasticity, which have synergistic effects that exacerbate the accumulation of deleterious mutations, our results should yield liberal upper bounds to the mean time to extinction caused by mutational degradation. Thus, deleterious mutation accumulation cannot be ruled out generally as a significant source of extinction vulnerability in small sexual populations or as a selective force influencing mating-system evolution.  相似文献   

17.
The advantage or disadvantage of sexual reproduction or recombination for the accumulation of mutant genes in a population is studied under the joint effects of recurrent mutations, selection, and random sampling drift. To obtain the rate at which mutant genes are incorporated three different methods are used; numerical integration of Kolmogorov backward equations, simulation of stochastic difference equations, and Monte Carlo experiments. The first two methods are used in a two-locus system to obtain the fixation probability of double mutants and other related quantities under five different selection models. The third one is conducted for a multiple-locus system and the rate of accumulation of mutant genes per locus is studied. Comparison of the results between sexual and asexual populations shows that the effect of recombination depends on initial linkage disequilibrium, mutation rate v, selection intensity s, and population size Ne. The mode of selection is also an important factor and the large effect of recombination is observed when mutant genes are individually deleterious but collectively favorable. Under a given model of selection, the great advantage or disadvantage of recombination is achieved when a large extent of genetic polymorphism is produced not by mutation but by recombination. Extreme values of Nes and Nev make the effect insignificant. The results of Monte Carlo experiments also reveal the presence of interaction between selection and sampling drift even when the loci segregate independently and selection is multiplicative. Although this interaction is usually small, there are cases in which one locus theory cannot be used freely. In those cases, the effect of recombination is prominent and one locus theory gives an overestimate of the rate.  相似文献   

18.
Kai Zeng  Pádraic Corcoran 《Genetics》2015,201(4):1539-1554
It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.  相似文献   

19.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

20.
Phylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, that is transitions do not cause extinction. Here, we theoretically explore the demographic consequences of the evolution of self‐fertilization. Deleterious mutations and mutations modifying the selfing rate are recurrently introduced and the number of offspring depends on individual fitness, allowing for a demographic feedback. We show that mutational meltdowns can be triggered in populations evolving near strict selfing. Populations having survived a demographic crash are more stable than ancestral outcrossing populations once deleterious mutations are purged. The relatively rapid time‐scales at which extinctions occur indicate that during evolutionary transitions the accumulation of deleterious mutations may not be the cause of extinctions observed on longer time scales, but could lead to the underestimation of transition rates from outcrossing to selfing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号