首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems.In oxygenic photosynthesis, PSII and PSI function in series to convert light energy into the chemical energy that fuels multiple metabolic processes. Most of this light energy is captured by the chlorophyll (Chl) and carotenoid pigments in the light-harvesting antenna complexes (LHCs) that are peripherally associated with the core complexes of both photosystems (Wobbe et al., 2016). However, since the two photosystems exhibit different absorption spectra (Nelson and Yocum, 2006; Nield and Barber, 2006; Qin et al., 2015), PSI or PSII is preferentially excited under naturally fluctuating light intensities and qualities. To optimize photosynthetic electron transfer, the excitation state of the two photosystems must be rebalanced in response to changes in lighting conditions. To achieve this, higher plants and green algae require rapid and precise acclimatory mechanisms to adjust the relative absorption cross-sections of the two photosystems.To date, the phenomenon of state transitions is one of the well-documented short-term acclimatory mechanisms. It allows a mobile portion of the light-harvesting antenna complex II (LHCII) to be allocated to either photosystem, depending on the spectral composition and intensity of the ambient light (Allen and Forsberg, 2001; Rochaix, 2011; Goldschmidt-Clermont and Bassi, 2015; Gollan et al., 2015). State transitions are driven by the redox state of the plastoquinone (PQ) pool (Vener et al., 1997; Zito et al., 1999). When PSI is preferentially excited (by far-red light), the PQ pool is oxidized and all the LHCII is associated with PSII. This allocation of antenna complexes is defined as state I. When light conditions (blue/red light or low light) favor exciton trapping of PSII, the transition from state I to state II occurs. The over-reduced PQ pool triggers the activation of the membrane-localized Ser-Thr kinase STN7, which phosphorylates an N-terminal Thr on each of two major LHCII proteins, LHCB1 and LHCB2 (Allen, 1992; Bellafiore et al., 2005; Shapiguzov et al., 2016). Phosphorylation of LHCII results in the dissociation of LHCII from PSII and triggers its reversible relocation to PSI (Allen, 1992; Rochaix, 2011). Conversely, when the PQ pool is reoxidized, STN7 is inactivated and the constitutively active, thylakoid-associated phosphatase TAP38/PPH1 dephosphorylates LHCII, which then reassociates with PSII (Pribil et al., 2010; Shapiguzov et al., 2010). The physiological significance of state transitions has been demonstrated by the reduction in growth rate seen in the stn7 knock-out mutant under fluctuating light conditions (Bellafiore et al., 2005; Tikkanen et al., 2010).The canonical state transitions model implies spatial and temporal regulation of the allocation of LHC between the two spatially segregated photosystems (Dekker and Boekema, 2005). PSII-LHCII supercomplexes are organized in a tightly packed form in the stacked grana regions of thylakoid membranes, while PSI-LHCI supercomplexes are mainly localized in the nonstacked stromal lamellae and grana margin regions (Dekker and Boekema, 2005; Haferkamp et al., 2010). It has been proposed that, in the grana margin regions, which harbor LHCII and both photosystems, LHCII can migrate rapidly between them (Albertsson et al., 1990; Albertsson, 2001). This idea is supported by the recent discovery of mega complexes containing both photosystems in the grana margin regions (Yokono et al., 2015). Furthermore, phosphorylation of LHCII was found to increase not only the amount of PSI found in the grana margin region of thylakoid membranes (Tikkanen et al., 2008a), but also to modulate the pattern of PSI-PSII megacomplexes under changing light conditions (Suorsa et al., 2015). Nonetheless, open questions remain in relation to the physiological significance of the detection of phosphorylated LHCII in all thylakoid regions, even under the constant light conditions (Grieco et al., 2012; Leoni et al., 2013; Wientjes et al., 2013), although LHCII phosphorylation has been shown to modify the stacking of thylakoid membranes (Chuartzman et al., 2008; Pietrzykowska et al., 2014).State I-to-state II transition is featured by the formation of LHCII-PSI-LHCI supercomplexes, in which LHCII favors the light-harvesting capacity of PSI. Recently, LHCII-PSI-LHCI supercomplexes have been successfully isolated and purified using various detergents (Galka et al., 2012; Drop et al., 2014; Crepin and Caffarri, 2015) or a styrene-maleic acid copolymer (Bell et al., 2015). These findings yielded further insights into the reorganization of supercomplexes associated with state transitions, and it was suggested that phosphorylation of LHCB2 rather than LHCB1 is the essential trigger for the formation of state transition supercomplexes (Leoni et al., 2013; Pietrzykowska et al., 2014; Crepin and Caffarri, 2015; Longoni et al., 2015). Furthermore, characterization of mutants deficient in individual PSI core subunits indicates that PsaH, L, and I are required for docking of LHCII at PSI (Lunde et al., 2000; Zhang and Scheller, 2004; Kouril et al., 2005; Plöchinger et al., 2016).Recently, the state transition capacity has been characterized in the Arabidopsis (Arabidopsis thaliana) mutants with missing LHCI components. Although the Arabidopsis knock-out mutants lacking one of the four LHCI proteins (LHCA1-4) showed enhanced accumulation of LHCII-PSI complexes, the absorption cross-section of PSI under state II conditions was still compromised in the lhca1-4 mutants, and it is suggested that LHCI mediates the detergent-sensitive interaction between ‘extra LHCII’ and PSI (Benson et al., 2015; Grieco et al., 2015). Furthermore, the Arabidopsis mutant ΔLhca lacking all LHCA1-4 proteins was shown to be compensated for the deficiency of LHCI by binding LHCII under state II conditions (Bressan et al., 2016). In spite of this finding, the significant reduction in the absorption cross-section of PSI was still observed in the ΔLhca mutant, suggesting a substantial role of LHCI in light absorption under canopy conditions (Bressan et al., 2016). However, these findings emphasize the acclimatory function of state transitions in balancing light absorption capacity between the two photosystems by modifying their relative antenna size and imply the dynamic and variable organization of PS-LHC supercomplexes.LHC proteins are encoded by the nuclear Lhc superfamily (Jansson, 1994). The biogenesis of LHCs includes the cytoplasmic synthesis of the LHC precursor proteins, their translocation into chloroplasts via the TOC/TIC complex, and their posttranslational targeting and integration into the thylakoid membranes by means of the chloroplast signal recognition particle (cpSRP) machinery (Jarvis and Lopez-Juez, 2013). The posttranslational cpSRP-dependent pathway for the final translocation of LHC proteins into the thylakoid membrane includes interaction of cpSRP43 with LHC apo-proteins and recruitment of cpSRP54 to form a transit complex. Then binding of this tripartite cpSRP transit complex to the SRP receptor cpFtsY follows, which supports docking of the transit complex to thylakoid membranes and its association with the LHC translocase ALB3. Ultimately, ALB3 inserts LHC apo-proteins into the thylakoid membrane (Richter et al., 2010). Importantly, stoichiometric amounts of newly synthesized Chl a and Chl b as well as carotenoid are inserted into the LHC apo-proteins by unknown mechanisms to form the functional LHCs that associate with the core complexes of both photosystems in the thylakoid membranes (Dall’Osto et al., 2015; Wang and Grimm, 2015).The first committed steps in Chl synthesis occur in the Mg branch of the tetrapyrrole biosynthesis pathway. 5-Aminolevulinic acid synthesis provides the precursor for the formation of protoporphyrin IX, which is directed into the Mg branch (Tanaka and Tanaka, 2007; Brzezowski et al., 2015). Chl synthesis ends with the conversion of Chl a to Chl b catalyzed by Chl a oxygenase (CAO; Tanaka et al., 1998; Tomitani et al., 1999). It has been hypothesized that coordination between Chl synthesis and the posttranslational cpSRP pathway is a prerequisite for the efficient integration of Chls into LHC apo-proteins.In this study, we intend to characterize the assembly of LHCs when the availability of Chl molecules or the integration of LHC apo-proteins into thylakoid membranes is limiting. To this end, we compared the assembly of LHCs and the organization of PS-LHC complexes in two different sets of Arabidopsis mutants. Firstly, we used the chlorina1-2 (ch1-2) mutant, which is defective in the CAO gene. The members of the second set of mutants carry knock-out mutations in genes involved in the chloroplast SRP pathway (Richter et al., 2010).Our studies revealed distinct accumulation of PS-LHC supercomplexes between the two sets of mutant relative to wild-type plants. In spite of the defect in synthesis of Chl b, ch1-2 retains predominantly intact PSI-LHCI supercomplexes but has strongly reduced amounts of LHCII. In contrast, the chaos (cpSRP43) mutant exhibits synchronously reduced contents of both LHCI and LHCII, which results in the accumulation of PS core complexes without accompanying LHCs. Thus, the distribution of LHCs in the thylakoid membranes of the two mutants, ch1-2 and chaos, were explored under varying light conditions with the aim of elucidating the influence of modified LHCI/LHCII antenna size on state transitions. Our results contribute to an expanding view on the variety of photosynthetic complexes, which can be observed in Arabidopsis plants with specified mutations in LHC biogenesis.  相似文献   

3.
4.
5.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

6.
7.
8.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

9.
10.
Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions.Several metals are important for chloroplast functioning, particularly in the photosynthetic apparatus, where they act as cofactors and catalysts in electron transport processes (Merchant, 2006; Nouet et al., 2011; Yruela, 2013). The photosynthetic biometals include iron (Fe) in the form of Fe-S clusters in PSI, heme-bridged Fe (cytochrome b559) and nonheme Fe in PSII, copper (Cu) in plastocyanin, magnesium (Mg) in chlorophyll (Chl), and calcium (Ca) and manganese (Mn) in PSII. Mn has a very special role because a metal cluster of four Mn ions and one Ca ion comprises the catalytic center of the oxygen evolving complex (OEC) in PSII (Ono et al., 1992; Umena et al., 2011). In the OEC, water is split, and molecular oxygen is produced by the photosynthetic light reactions. The photosynthetic biometals are, however, highly reactive and involved in a multitude of side reactions, which constitute a challenge for metal homeostasis. Accordingly, the handling of metals must be tightly regulated, and they must be kept within specific concentration ranges inside living cells to ensure adequate supply, while at the same time, avoiding oxidative stress (Pakrasi et al., 2001; Shcolnick and Keren, 2006; Møller et al., 2007).PSII is a large pigment-protein complex localized in the grana regions of the thylakoid membrane of chloroplasts. The basic structure of PSII is a monomer, and each complex contains more than 40 different proteins bound either stably or transiently (Nelson and Yocum, 2006; Shi et al., 2012; Järvi et al., 2015). The luminal surfaces of PSII are associated with the extrinsic proteins PsbO, PsbP, and PsbQ, which shield and support the catalytic Mn cluster and are required for efficient oxygen evolution (Roose et al., 2007; Bricker et al., 2012; Liu et al., 2014). After dimerization of the monomer, the complex associates with multiple copies of the light-harvesting antenna complex II (LHCII), forming various types of functional PSII-LHCII supercomplexes (Tikkanen et al., 2008; Kouřil et al., 2012; Shi et al., 2012).Intact PSII-LHCII supercomplexes have been successfully isolated, characterized, and refined from, for example, pea (Pisum sativum; Barera et al., 2012), Arabidopsis (Arabidopsis thaliana; Caffarri et al., 2009), and green algae (Chlamydomonas reinhardtii; Tokutsu et al., 2012). The procedure has typically involved Suc density gradient ultracentrifugation. Also, blue native (BN)-PAGE has been optimized for the separation and proteomic characterization of thylakoid PSII-LHCII supercomplexes (Heinemeyer et al., 2004; Järvi et al., 2011; Pagliano et al., 2014). The supramolecular organization of isolated PSII is very much dependent on the choice of detergent for efficient solubilization of the membrane-bound photosynthetic pigment-protein complexes. In recent years, dodecyl maltoside (DM) has become a commonly used detergent for one-step isolation of integral membrane proteins and complexes from thylakoids (Eshaghi et al., 1999; van Roon et al., 2000; Dekker et al., 2002; Pagliano et al., 2011). This detergent exists in two isomeric forms (α-DM and β-DM), of which α-DM is a milder detergent than β-DM, thereby better preserving the integrity of large PSII-LHCII supercomplexes (Pagliano et al., 2012).The major challenge associated with purification of higher plant PSII-LHCII supercomplexes is to obtain and subsequently, maintain the integrity of PSII super- and subcomplexes, including cofactors and the extrinsic proteins. To prevent dissociation of biometals and the extrinsic proteins from PSII, the osmoprotectant betaine (Papageorgiou et al., 1991; Papageorgiou and Murata, 1995) has successfully been included in the buffer of Suc gradients (Boekema et al., 1998; Tokutsu et al., 2012). Although the above-mentioned methods primarily have focused on the characterization and structural organization of isolated PSII-LHCII supercomplexes, no bench-top method has been available that allows direct analysis of the actual metal binding in PSII super- and subcomplexes. Such a method is required in order to fully understand how Mn and other photosynthetic biometals interact with the photosynthetic complexes, in particular PSII, and how the metal binding affects PSII dynamics under changing environmental conditions, including plant nutritional disorders.We here present a robust and highly sensitive method for analysis of metal binding in PSII-LHCII super- and subcomplexes from isolated barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography (SEC) coupled to inductively coupled plasma (ICP) triple-quadrupole (QQQ) mass spectrometry (MS). SEC is a gentle protein separation technique, provided that the stationary and mobile phases are carefully selected. Using an optimized set of analytical conditions, it is possible to maintain the integrity of metalloprotein complexes (Persson et al., 2009; Husted et al., 2011). We systematically evaluate the essential and important factors required to obtain optimal chromatographic resolution while maintaining PSII integrity, focusing on choice of mobile phase, detergents, stabilizers, and the most suitable chromatographic columns for efficient protein fractionation and elution. The optimized method, with its multielement ability, enables the study of metal binding in PSII-LHCII super- and subcomplexes. To show the applicability of the method, we studied the metal profiles of barley thylakoids that had been isolated from plants with different levels of Mn deficiency. Mn binding in size-fractionated PSII complexes was evaluated in response to increasing Mn deficiency, and two genotypes differing in their tolerance to Mn deficiency were compared.  相似文献   

11.
12.
Spatial segregation of metabolism, such as cellular-localized CO2 fixation in C4 plants or in the cyanobacterial carboxysome, enhances the activity of inefficient enzymes by selectively concentrating them with their substrates. The carboxysome and other bacterial microcompartments (BMCs) have drawn particular attention for bioengineering of nanoreactors because they are self-assembling proteinaceous organelles. All BMCs share an architecturally similar, selectively permeable shell that encapsulates enzymes. Fundamental to engineering carboxysomes and other BMCs for applications in plant synthetic biology and metabolic engineering is understanding the structural determinants of cargo packaging and shell permeability. Here we describe the expression of a synthetic operon in Escherichia coli that produces carboxysome shells. Protein domains native to the carboxysome core were used to encapsulate foreign cargo into the synthetic shells. These synthetic shells can be purified to homogeneity with or without luminal proteins. Our results not only further the understanding of protein-protein interactions governing carboxysome assembly, but also establish a platform to study shell permeability and the structural basis of the function of intact BMC shells both in vivo and in vitro. This system will be especially useful for developing synthetic carboxysomes for plant engineering.A key enzyme in photosynthesis is the CO2 fixation enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). Rubisco not only fixes CO2, resulting in carbon assimilation, but it can also fix O2, leading to photorespiration. Suppressing the unwanted oxygenase activity of Rubisco by sequestering Rubisco with a source of CO2 is Nature’s solution to this substrate discrimination problem. While C4 plants compartmentalize CO2 fixation in specific cells (Hibberd et al., 2008; Parry et al., 2011), cyanobacteria have evolved a specialized organelle composed entirely of protein to encapsulate Rubisco—the carboxysome.The carboxysome is just one type of bacterial microcompartment (BMC), widespread, functionally diverse bacterial organelles (Axen et al., 2014). All BMCs consist of an enzymatic core surrounded by a selectively permeable protein shell (Kerfeld et al., 2005; Tanaka et al., 2008; Chowdhury et al., 2014; Kerfeld and Erbilgin, 2015). While the encapsulated enzymes differ among functionally distinct BMCs, they share an architecturally similar shell composed of three types of proteins: BMC-H, BMC-T, and BMC-P forming hexamers, pseudohexamers, and pentamers, respectively (Kerfeld and Erbilgin, 2015). These constitute the building blocks of a self-assembling, apparently icosahedral shell with a diameter ranging from 40 to 400 nm (Shively et al., 1973a,b, 1998; Price and Badger, 1991; Bobik et al., 1999; Iancu et al., 2007, 2010; Petit et al., 2013; Erbilgin et al., 2014). Recent studies have also shown that in the biogenesis of BMCs an encapsulation peptide (EP) (Fan and Bobik, 2011; Kinney et al., 2012; Aussignargues et al., 2015; Jakobson et al., 2015), a short (approximately 18 residues) amphipathic α-helix mediates interactions between a subset of core protein and the shell (Fan and Bobik, 2011; Choudhary et al., 2012; Kinney et al., 2012; Lawrence et al., 2014; Lin et al., 2014; Aussignargues et al., 2015). Indeed, because they are self-assembling organelles composed entirely of protein, BMCs hold great promise for diverse applications in bioengineering and development of bionanomaterials (Frank et al., 2013; Chowdhury et al., 2014; Chessher et al., 2015; Kerfeld and Erbilgin, 2015); the key features of BMCs include selective permeability, spatial colocalization of enzymes, the establishment of private cofactor pools, and the potentially beneficial effects of confinement on protein stability. For example, introducing carboxysomes into plants could provide a saltational enhancement of crop photosynthesis (Price et al., 2013; Zarzycki et al., 2013; Lin et al., 2014; McGrath and Long, 2014).The β-carboxysome, which sequesters form 1B Rubisco, has been an important model system for the study of the structural basis of carboxysome function, assembly, and engineering (Kerfeld et al., 2005; Tanaka et al., 2008; Cameron et al., 2013; Aussignargues et al., 2015; Cai et al., 2015). Beta-carboxysomes assemble from the inside out (Cameron et al., 2013; Gonzalez-Esquer et al., 2015). Two proteins that are absolutely conserved and unique to β-carboxysomes, CcmM and CcmN, play essential roles in this process: CcmM crosslinks Rubisco through its C-terminal Rubisco small subunit-like domains (SSLDs; pfam00101); CcmM and CcmN interact through their N-terminal domains; and C-terminal EP of CcmN interacts with the carboxysome shell.Here we describe a system for producing synthetic β-carboxysome shells and encapsulating nonnative cargo. We constructed a synthetic operon composed of ccmK1, ccmK2, ccmL, and ccmO, genes encoding, respectively, two BMC-H proteins, a BMC-P protein, and a BMC-T protein of the carboxysome shell of the halotolerant cyanobacterium, Halothece sp. PCC 7418 (Halo hereafter). Recombinant shells composed of all four proteins were produced and purified. We also demonstrated that the terminal α-helices of CcmK1 and CcmK2 are not, as had been proposed (Samborska and Kimber, 2012), required for the shell formation, and that the synthetic shell is a single-layered protein membrane. Cargo could be targeted to the interior of the synthetic shells using either the EP of CcmN or the N-terminal domain of CcmM; the latter observation provides new insight into the organization of the β-carboxysome. Our results not only further the understanding of protein-protein interactions governing carboxysome assembly but also provide a platform to study carboxysome shell permeability. These results will be useful in guiding the design and optimization of carboxysomes and other BMCs for introduction into plants.  相似文献   

13.
The mitochondrial electron transport chain includes an alternative oxidase (AOX) that is hypothesized to aid photosynthetic metabolism, perhaps by acting as an additional electron sink for photogenerated reductant or by dampening the generation of reactive oxygen species. Gas exchange, chlorophyll fluorescence, photosystem I (PSI) absorbance, and biochemical and protein analyses were used to compare respiration and photosynthesis of Nicotiana tabacum ‘Petit Havana SR1’ wild-type plants with that of transgenic AOX knockdown (RNA interference) and overexpression lines, under both well-watered and moderate drought-stressed conditions. During drought, AOX knockdown lines displayed a lower rate of respiration in the light than the wild type, as confirmed by two independent methods. Furthermore, CO2 and light response curves indicated a nonstomatal limitation of photosynthesis in the knockdowns during drought, relative to the wild type. Also relative to the wild type, the knockdowns under drought maintained PSI and PSII in a more reduced redox state, showed greater regulated nonphotochemical energy quenching by PSII, and displayed a higher relative rate of cyclic electron transport around PSI. The origin of these differences may lie in the chloroplast ATP synthase amount, which declined dramatically in the knockdowns in response to drought. None of these effects were seen in plants overexpressing AOX. The results show that AOX is necessary to maintain mitochondrial respiration during moderate drought. In its absence, respiration rate slows and the lack of this electron sink feeds back on the photosynthetic apparatus, resulting in a loss of chloroplast ATP synthase that then limits photosynthetic capacity.The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons in the ubiquinone pool partition between the cytochrome (cyt) pathway (consisting of Complex III, cyt c, and Complex IV) and alternative oxidase (AOX; Finnegan et al., 2004; Millar et al., 2011; Vanlerberghe, 2013). AOX directly couples ubiquinol oxidation with O2 reduction to water. This reduces the energy yield of respiration because, unlike Complexes III and IV, AOX is not proton pumping. Hence, AOX is an electron sink, the capacity of which is little encumbered by rates of ATP turnover. In this way, AOX might be well suited to prevent cellular over-reduction. Supporting this, transgenic Nicotiana tabacum leaves with suppressed amounts of AOX have increased concentrations of mitochondrial-localized superoxide radical (O2) and nitric oxide, the products that can arise when an over-reduced ETC results in electron leakage to O2 or nitrite (Cvetkovska and Vanlerberghe, 2012, 2013).In angiosperms, AOX is encoded by a small gene family (Considine et al., 2002). In Arabidopsis (Arabidopsis thaliana), mutation or knockdown of the stress-responsive AOX1a gene family member dramatically reduces AOX protein and the capacity of the AOX respiration pathway to consume O2. Several studies have shown that this loss of AOX capacity in Arabidopsis aox1a plants affected processes such as growth, carbon and energy metabolism, and/or the cellular network of reactive oxygen species (ROS) scavengers (Fiorani et al., 2005; Umbach et al., 2005; Watanabe et al., 2008; Giraud et al., 2008; Skirycz et al., 2010). However, in studies in which respiration was measured, it was consistently reported that the lack of AOX capacity had no significant impact on the respiration rate in the dark (RD; Umbach et al., 2005; Giraud et al., 2008; Strodtkötter et al., 2009; Florez-Sarasa et al., 2011; Yoshida et al., 2011b; Gandin et al., 2012). The exceptions are two reports that RD was actually higher in aox1a than in the wild type under some conditions (Watanabe et al., 2008; Vishwakarma et al., 2014). To our knowledge, how the lack of AOX affects respiration rate in the light (RL) is not reported in Arabidopsis or other species.Numerous studies have established the importance of mitochondrial metabolism in the light to optimize photosynthesis (Hoefnagel et al., 1998; Raghavendra and Padmasree, 2003). In recent years, the potential importance of specifically AOX respiration during photosynthesis has been examined using the Arabidopsis aox1a plants (Giraud et al., 2008; Strodtkötter et al., 2009; Zhang et al., 2010; Florez-Sarasa et al., 2011; Yoshida et al., 2011a, 2011b). In general, these studies reported small perturbations of photosynthesis in standard-grown aox1a plants, including slightly lower rates of CO2 uptake or O2 release (Gandin et al., 2012; Vishwakarma et al., 2014), slightly higher rates of cyclic electron transport (CET; Yoshida et al., 2011b), and slightly increased susceptibility to photoinhibition after a high light treatment (Florez-Sarasa et al., 2011). Generally, these studies concluded that aox1a plants exhibit a biochemical limitation of photosynthesis, in line with the hypothesis that AOX serves as a sink for excess photogenerated reducing power, with the reductant likely reaching the mitochondrion via the malate valve (Noguchi and Yoshida, 2008; Taniguchi and Miyake, 2012). Similar to these Arabidopsis studies, we recently reported that well-watered N. tabacum AOX knockdowns grown at moderate irradiance display a slight reduced rate of photosynthesis (approximately 10%–15%) when measured at high irradiance. However, we established that the lower photosynthetic rate was the result of a stomatal rather than biochemical limitation of photosynthesis, and provided evidence that this stomatal limitation resulted from disrupted nitric oxide homeostasis within the guard cells of AOX knockdown plants (Cvetkovska et al., 2014).Drought is a common abiotic stress that can substantially curtail photosynthesis because stomatal closure, meant to conserve water, also restricts CO2 availability to the Calvin cycle. Besides this well established stomatal limitation of photosynthesis, there may also be water deficit-sensitive biochemical components that contribute to the reduction of photosynthesis during drought. However, the nature of this biochemical limitation and the degree to which it contributes to the curtailment of photosynthesis during drought remain areas of active debate (Flexas et al., 2004; Lawlor and Tezara, 2009; Pinheiro and Chaves, 2011). Additional factors, such as patchy stomatal closure (Sharkey and Seemann, 1989; Gunasekera and Berkowitz, 1992) or changes in the conductance to CO2 of mesophyll cells (Perez-Martin et al., 2009), can further complicate analyses of photosynthesis during drought.Metabolism can experience energy imbalances, when there is a mismatch between rates of synthesis and rates of utilization of ATP and/or NADPH, and the importance of mechanisms to minimize such imbalances has been emphasized (Cruz et al., 2005; Kramer and Evans, 2011; Vanlerberghe, 2013). For example, such imbalances may occur in the chloroplast when the use of ATP and NADPH by the Calvin cycle does not keep pace with the harvesting of light energy (Hüner et al., 2012). This can result in excess excitation energy that can damage photosynthetic components, perhaps through the generation of ROS (Asada, 2006; Noctor et al., 2014). Such a scenario has been hypothesized to underlie the development of the biochemical limitations of photosynthesis reported during drought (Lawlor and Tezara, 2009).In this study, we find that N. tabacum AOX knockdowns show a compromised rate of mitochondrial respiration in the light during moderate drought. This corresponds with a strong nonstomatal limitation of photosynthesis in these plants relative to the wild type, and we describe a biochemical basis for this photosynthetic limitation. The results indicate that AOX is a necessary electron sink to support photosynthesis during drought, a condition when the major photosynthetic electron sink, the Calvin cycle, is becoming limited by CO2 availability.  相似文献   

14.
15.
16.
17.
Two mutants sensitive to heat stress for growth and impaired in NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET) were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in the same sll0272 gene, encoding a protein highly homologous to NdhV identified in Arabidopsis (Arabidopsis thaliana). Deletion of the sll0272 gene (ndhV) did not influence the assembly of NDH-1 complexes and the activities of CO2 uptake and respiration but reduced the activity of NDH-CET. NdhV interacted with NdhS, a ferredoxin-binding subunit of cyanobacterial NDH-1 complex. Deletion of NdhS completely abolished NdhV, but deletion of NdhV had no effect on the amount of NdhS. Reduction of NDH-CET activity was more significant in ΔndhS than in ΔndhV. We therefore propose that NdhV cooperates with NdhS to accept electrons from reduced ferredoxin.Cyanobacterial NADPH dehydrogenase (NDH-1) complexes are localized in the thylakoid membrane (Ohkawa et al., 2001, 2002; Zhang et al., 2004; Xu et al., 2008; Battchikova et al., 2011b) and participate in a variety of bioenergetic reactions, such as respiration, cyclic electron transport around photosystem I (NDH-CET), and CO2 uptake (Ogawa, 1991; Mi et al., 1992; Ohkawa et al., 2000). Structurally, the cyanobacterial NDH-1 complexes closely resemble energy-converting complex I in eubacteria and the mitochondrial respiratory chain regardless of the absence of homologs of three subunits in cyanobacterial genomes that constitute the catalytically active core of complex I (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006). Over the past decade, new subunits of NDH-1 complexes specific to oxygenic photosynthesis have been identified in several cyanobacterial strains. They are NdhM to NdhQ and NdhS (Prommeenate et al., 2004; Battchikova et al., 2005, 2011b; Nowaczyk et al., 2011; Wulfhorst et al., 2014; Zhang et al., 2014; Zhao et al., 2014b, 2015), in addition to NdhL first identified in the cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter Synechocystis 6803) about 20 years ago (Ogawa, 1992). Among them, NdhS possesses a ferredoxin (Fd)-binding motif and was shown to bind Fd, which suggested that Fd is one of the electron donors to NDH-1 complexes (Mi et al., 1995; Battchikova et al., 2011b; Ma and Ogawa, 2015). Deletion of NdhS strongly reduced the activity of NDH-CET but had no effect on respiration and CO2 uptake (Battchikova et al., 2011b; Ma and Ogawa, 2015). The NDH-CET plays an important role in coping with various environmental stresses regardless of its elusive mechanism. For example, this function can greatly alleviate heat-sensitive growth phenotypes (Wang et al., 2006a; Zhao et al., 2014a). Thus, heat treatment strategy can help in identifying the proteins essential to NDH-CET.Here, a new oxygenic photosynthesis-specific (OPS) subunit NdhV was identified in Synechocystis 6803 with the help of heat treatment strategy, and its deletion did not influence the assembly of NDH-1L and NDH-1MS complexes and the activities of CO2 uptake and respiration but impaired the NDH-CET activity. We give evidence that NdhV interacts with NdhS and is another component of Fd-binding domain of cyanobacterial NDH-1 complex. A possible role of NdhV on the NDH-CET activity is discussed.  相似文献   

18.
19.
20.
Nitric oxide (NO) is a small redox molecule that acts as a signal in different physiological and stress-related processes in plants. Recent evidence suggests that the biological activity of NO is also mediated by S-nitrosylation, a well-known redox-based posttranslational protein modification. Here, we show that during programmed cell death (PCD), induced by both heat shock (HS) or hydrogen peroxide (H2O2) in tobacco (Nicotiana tabacum) Bright Yellow-2 cells, an increase in S-nitrosylating agents occurred. NO increased in both experimentally induced PCDs, although with different intensities. In H2O2-treated cells, the increase in NO was lower than in cells exposed to HS. However, a simultaneous increase in S-nitrosoglutathione (GSNO), another NO source for S-nitrosylation, occurred in H2O2-treated cells, while a decrease in this metabolite was evident after HS. Consistently, different levels of activity and expression of GSNO reductase, the enzyme responsible for GSNO removal, were found in cells subjected to the two different PCD-inducing stimuli: low in H2O2-treated cells and high in the heat-shocked ones. Irrespective of the type of S-nitrosylating agent, S-nitrosylated proteins formed upon exposure to both of the PCD-inducing stimuli. Interestingly, cytosolic ascorbate peroxidase (cAPX), a key enzyme controlling H2O2 levels in plants, was found to be S-nitrosylated at the onset of both PCDs. In vivo and in vitro experiments showed that S-nitrosylation of cAPX was responsible for the rapid decrease in its activity. The possibility that S-nitrosylation induces cAPX ubiquitination and degradation and acts as part of the signaling pathway leading to PCD is discussed.Nitric oxide (NO) is a gaseous and diffusible redox molecule that acts as a signaling compound in both animal and plant systems (Pacher et al., 2007; Besson-Bard et al., 2008). In plants, NO has been found to play a key role in several physiological processes, such as germination, lateral root development, flowering, senescence, stomatal closure, and growth of pollen tubes (Beligni and Lamattina, 2000; Neill et al., 2002; Correa-Aragunde et al., 2004; He et al., 2004; Prado et al., 2004; Carimi et al., 2005). In addition, NO has been reported to be involved in plant responses to both biotic and abiotic stresses (Leitner et al., 2009; Siddiqui et al., 2011) and in the signaling pathways leading to programmed cell death (PCD; Delledonne et al., 1998; de Pinto et al., 2006; De Michele et al., 2009; Lin et al., 2012; Serrano et al., 2012).The cellular environment may greatly influence the chemical reactivity of NO, giving rise to different biologically active NO-derived compounds, collectively named reactive nitrogen species, which amplify and differentiate its ability to activate physiological and stress-related processes. Many of the biological properties of NO are due to its high affinity with transition metals of metalloproteins as well as its reactivity with reactive oxygen species (ROS; Hill et al., 2010). However, recent evidence suggests that protein S-nitrosylation, due to the addition of NO to reactive Cys thiols, may act as a key mechanism of NO signaling in plants (Wang et al., 2006; Astier et al., 2011). NO is also able to react with reduced glutathione (GSH), the most abundant cellular thiol, thus producing S-nitrosoglutathione (GSNO), which also acts as an endogenous trans-nitrosylating agent. GSNO is also considered as a NO store and donor and, as it is more stable than NO, acts as a long-distance NO transporter through the floematic flux (Malik et al., 2011). S-Nitrosoglutathione reductase (GSNOR), which is an enzyme conserved from bacteria to humans, has been suggested to play a role in regulating S-nitrosothiols (SNO) and the turnover of S-nitrosylated proteins in plants (Liu et al., 2001; Rusterucci et al., 2007).A number of proteins involved in metabolism, stress responses, and redox homeostasis have been identified as potential targets for S-nitrosylation in Arabidopsis (Arabidopsis thaliana; Lindermayr et al., 2005). During the hypersensitive response (HR), 16 proteins were identified to be S-nitrosylated in the seedlings of the same species (Romero-Puertas et al., 2008); in Citrus species, S-nitrosylation of about 50 proteins occurred in the NO-mediated resistance to high salinity (Tanou et al., 2009).However, while the number of candidate proteins for S-nitrosylation is increasing, the functional significance of protein S-nitrosylation has been explained only in a few cases, such as for nonsymbiotic hemoglobin (Perazzolli et al., 2004), glyceraldehyde 3-phosphate dehydrogenase (Lindermayr et al., 2005; Wawer et al., 2010), Met adenosyltransferase (Lindermayr et al., 2006), and metacaspase9 (Belenghi et al., 2007). Of particular interest are the cases in which S-nitrosylation involves enzymes controlling ROS homeostasis. For instance, it has been reported that S-nitrosylation of peroxiredoxin IIE regulates the antioxidant function of this enzyme and might contribute to the HR (Romero-Puertas et al., 2007). It has also been shown that in the immunity response, S-nitrosylation of NADPH oxidase inactivates the enzyme, thus reducing ROS production and controlling HR development (Yun et al., 2011).Recently, S-nitrosylation has also been shown to be involved in PCD of nitric oxide excess1 (noe1) rice (Oryza sativa) plants, which are mutated in the OsCATC gene coding for catalase (Lin et al., 2012). In these plants, which show PCD-like phenotypes under high-light conditions, glyceraldehyde 3-phosphate dehydrogenase and thioredoxin are S-nitrosylated. This suggests that the NO-dependent regulation of these proteins is involved in plant PCD, similar to what occurs in animal apoptosis (Sumbayev, 2003; Hara et al., 2005; Lin et al., 2012). The increase in hydrogen peroxide (H2O2) after exposure to high light in noe1 plants is responsible for the production of NO required for leaf cell death induction (Lin et al., 2012). There is a strict relationship between H2O2 and NO in PCD activation (Delledonne et al., 2001; de Pinto et al., 2002); however, the mechanism of this interplay is largely still unknown (for review, see Zaninotto et al., 2006; Zhao, 2007; Yoshioka et al., 2011). NO can induce ROS production and vice versa, and their reciprocal modulation in terms of intensity and timing seems to be crucial in determining PCD activation and in controlling HR development (Delledonne et al., 2001; Zhao, 2007; Yun et al., 2011).In previous papers, we demonstrated that heat shock (HS) at 55°C and treatment with 50 mm H2O2 promote PCD in tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells (Vacca et al., 2004; de Pinto et al., 2006; Locato et al., 2008). In both experimental conditions, NO production and decrease in cytosolic ascorbate peroxidase (cAPX) were observed as early events in the PCD pathway, and cAPX decrease has been suggested to contribute to determining the redox environment required for PCD (de Pinto et al., 2006; Locato et al., 2008).In this study, the production of nitrosylating agents (NO and GSNO) in the first hours of PCD induction by HS or H2O2 treatment in tobacco BY-2 cells and their role in PCD were studied. The possibility that S-nitrosylation could be a first step in regulating cAPX activity and turnover as part of the signaling pathway leading to PCD was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号