首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Tumors are appreciated to be an intrinsically heterogeneous population of cells with varying proliferation capacities and tumorigenic potentials. As a central tenet of the so-called cancer stem cell hypothesis, most cancer cells have only a limited lifespan, and thus cannot initiate or reinitiate tumors. Longevity and clonogenicity are properties unique to the subpopulation of cancer stem cells. To understand the implications of the population structure suggested by this hypothesis—a hierarchy consisting of cancer stem cells and progeny non-stem cancer cells which experience a reduction in their remaining proliferation capacity per division—we set out to develop a mathematical model for the development of the aggregate population. We show that overall tumor progression rate during the exponential growth phase is identical to the growth rate of the cancer stem cell compartment. Tumors with identical stem cell proportions, however, can have different growth rates, dependent on the proliferation kinetics of all participating cell populations. Analysis of the model revealed that the proliferation potential of non-stem cancer cells is likely to be small to reproduce biologic observations. Furthermore, a single compartment of non-stem cancer cell population may adequately represent population growth dynamics only when the compartment proliferation rate is scaled with the generational hierarchy depth.  相似文献   

2.
High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC.  相似文献   

3.
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell(CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cel s harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.  相似文献   

4.
Cancer stem cells (CSCs) drive tumor progression, metastases, treatment resistance, and recurrence. Understanding CSC kinetics and interaction with their nonstem counterparts (called tumor cells, TCs) is still sparse, and theoretical models may help elucidate their role in cancer progression. Here, we develop a mathematical model of a heterogeneous population of CSCs and TCs to investigate the proposed “tumor growth paradox”—accelerated tumor growth with increased cell death as, for example, can result from the immune response or from cytotoxic treatments. We show that if TCs compete with CSCs for space and resources they can prevent CSC division and drive tumors into dormancy. Conversely, if this competition is reduced by death of TCs, the result is a liberation of CSCs and their renewed proliferation, which ultimately results in larger tumor growth. Here, we present an analytical proof for this tumor growth paradox. We show how numerical results from the model also further our understanding of how the fraction of cancer stem cells in a solid tumor evolves. Using the immune system as an example, we show that induction of cell death can lead to selection of cancer stem cells from a minor subpopulation to become the dominant and asymptotically the entire cell type in tumors.  相似文献   

5.
Recent research in cancer biology has suggested the hypothesis that tumors are initiated and driven by a small group of cancer stem cells (CSCs). Furthermore, cancer stem cell niches have been found to be essential in determining fates of CSCs, and several signaling pathways have been proven to play a crucial role in cellular behavior, which could be two important factors in cancer development. To better understand the progression, heterogeneity and treatment response of breast cancer, especially in the context of CSCs, we propose a mathematical model based on the cell compartment method. In this model, three compartments of cellular subpopulations are constructed: CSCs, progenitor cells (PCs), and terminal differentiated cells (TCs). Moreover, (1) the cancer stem cell niche is, considered by modeling its effect on division patterns (symmetric or asymmetric) of CSCs, and (2) the EGFR signaling pathway is integrated by modeling its role in cell proliferation, apoptosis. Our simulation results indicate that (1) a higher probability for symmetric division of CSC may result in a faster expansion of tumor population, and for a larger number of niches, the tumor grows at a slower rate, but the final tumor volume is larger; (2) higher EGFR expression correlates to tumors with larger volumes while a saturation function is observed, and (3) treatments that inhibit tyrosine kinase activity of EGFR may not only repress the tumor volume, but also decrease the CSCs percentages by shifting CSCs from symmetric divisions to asymmetric divisions. These findings suggest that therapies should be designed to effectively control or eliminate the symmetric division of CSCs and to reduce or destroy the CSC niches.  相似文献   

6.
Glioblastomas are highly lethal cancers that contain cellular hierarchies with self-renewing cancer stem cells that can propagate tumors in secondary transplant assays. The potential significance of cancer stem cells in cancer biology has been demonstrated by studies showing contributions to therapeutic resistance, angiogenesis, and tumor dispersal. We recently reported that physiologic oxygen levels differentially induce hypoxia inducible factor-2α (HIF2α) levels in cancer stem cells. HIF1α functioned in proliferation and survival of all cancer cells but also was activated in normal neural progenitors suggesting a potentially restricted therapeutic index while HIF2α was essential in only in cancer stem cells and was not expressed by normal neural progenitors demonstrating HIF2α is a cancer stem cell specific target. We now extend these studies to examine the role of hypoxia in regulating tumor cell plasticity. We find that hypoxia promotes the self-renewal capability of the stem and non-stem population as well as promoting a more stem-like phenotype in the non-stem population with increased neurosphere formation as well as upregulation of important stem cell factors, such as OCT4, NANOG, and c-MYC. The importance of HIF2α was further supported as forced expression of non-degradable HIF2α induced a cancer stem cell marker and augmented the tumorigenic potential of the non-stem population. This novel finding may indicate a specific role of HIF2α in promoting glioma tumorigenesis. The unexpected plasticity of the non-stem glioma population and the stem-like phenotype emphasizes the importance of developing therapeutic strategies targeting the microenvironmental influence on the tumor in addition to cancer stem cells.  相似文献   

7.
L Ghisolfi  AC Keates  X Hu  DK Lee  CJ Li 《PloS one》2012,7(8):e43628
The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.  相似文献   

8.
Cancer stem cells and human malignant melanoma   总被引:1,自引:0,他引:1  
Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma.  相似文献   

9.
Glioblastomas (GBMs) are the most lethal and common types of primary brain tumors. The hallmark of GBMs is their highly infiltrative nature. The cellular and molecular mechanisms underlying the aggressive cancer invasion in GBMs are poorly understood. GBM displays remarkable cellular heterogeneity and hierarchy containing self-renewing glioblastoma stem cells (GSCs). Whether GSCs are more invasive than non-stem tumor cells and contribute to the invasive phenotype in GBMs has not been determined. Here we provide experimental evidence supporting that GSCs derived from GBM surgical specimens or xenografts display greater invasive potential in vitro and in vivo than matched non-stem tumor cells. Furthermore, we identified several invasion-associated proteins that were differentially expressed in GSCs relative to non-stem tumor cells. One of such proteins is L1CAM, a cell surface molecule shown to be critical to maintain GSC tumorigenic potential in our previous study. Immunohistochemical staining showed that L1CAM is highly expressed in a population of cancer cells in the invasive fronts of primary GBMs. Collectively, these data demonstrate the invasive nature of GSCs, suggesting that disrupting GSCs through a specific target such as L1CAM may reduce GBM cancer invasion and tumor recurrence.  相似文献   

10.
The cancer stem cell (CSC) concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation) sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-)hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.  相似文献   

11.
An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44(+)CD24(-) phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications.  相似文献   

12.
ABSTRACT: BACKGROUND: The role of the immune system in tumor progression has been subject to discussion for many decades. Numerous studies suggest that a low immune response might be beneficial, if not necessary, for tumor growth, and only a strong immune response can counter tumor growth and thus inhibit progression. METHODS: We implement a cellular automaton model previously described that captures the dynamical interactions between the cancer stem and non-stem cell populations of a tumor through a process of self-metastasis. By overlaying on this model the diffusion of immune reactants into the tumor from a peripheral source to target cells, we simulate the process of immune-system-induced cell kill on tumor progression. RESULTS: A low cytotoxic immune reaction continuously kills cancer cells and, although at a low rate, thereby causes the liberation of space-constrained cancer stem cells to drive self-metastatic progression and continued tumor growth. With increasing immune system strength, however, tumor growth peaks, and then eventually falls below the intrinsic tumor sizes observed without an immune response. With this increasing immune response the number and proportion of cancer stem cells monotonically increases, implicating an additional unexpected consequence, that of cancer stem cell selection, to the immune response. CONCLUSIONS: Cancer stem cells and immune cytotoxicity alone are sufficient to explain the three-step "immunoediting" concept - the modulation of tumor growth through inhibition, selection and promotion.  相似文献   

13.
Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC) model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs) can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy.  相似文献   

14.
Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development.In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control.  相似文献   

15.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

16.
Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer and while it has a generally good prognosis, tumor recurrence remains a major clinical challenge. Studying laboratory cell lines as well as clinical specimens indicate that PTC may follow the cancer stem cell (CSC) model. However, CSC characteristics relevant in PTC initiation and progression remain largely unknown. Here we studied a population of sphere-growing tumor cells isolated from primary cultures of clinical PTC. These sphere-growing cells consisted of aldehyde dehydrogenase positive (ALDH+) and ALDH negative (ALDH-) cell subpopulations and demonstrated a hierarchical pattern of cell division. Using combinations of selective depletion, specific inhibition and cell sorting, we found that both subpopulations of the sphere cells were able to self-renew and initiate xenograft tumors independently, and fulfilled the definition of CSC. Importantly, when the subpopulations functioned together, the cancer-initiation efficiency and the xenograft tumor progression were significantly enhanced compared to either subpopulation alone. These data revealed crucial roles of ALDH- CSC in PTC biology and suggested that CSC subpopulations function cooperatively to control PTC initiation and progression. Together, our study indicates that CSC subpopulations isolated from clinical specimens offer unprecedented opportunities for investigating PTC pathogenesis and developing effective therapies.  相似文献   

17.
Cancer stem cells (CSC) represent malignant cell subsets in hierarchically organized tumors, which are selectively capable of tumor initiation and self‐renewal and give rise to bulk populations of non‐tumorigenic cancer cell progeny through differentiation. Robust evidence for the existence of prospectively identifiable CSC among cancer bulk populations has been generated using marker‐specific genetic lineage tracking of molecularly defined cancer subpopulations in competitive tumor development models. Moreover, novel mechanisms and relationships have been discovered that link CSC to cancer therapeutic resistance and clinical tumor progression. Importantly, proof‐of‐principle for the potential therapeutic utility of the CSC concept has recently been provided by demonstrating that selective killing of CSC through a prospective molecular marker can inhibit tumor growth. Herein, we review these novel and translationally relevant research developments and discuss potential strategies for CSC‐targeted therapy in the context of resistance mechanisms and molecular pathways preferentially operative in CSC.  相似文献   

18.
There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC)-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25–8.75 Gy) and survival curves were determined by colony formation. A final slope, D0, of the survival curve for each cell line was determined to measure radiosensitivity. The D0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy). After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM) and delay of γ-H2AX foci removal (DNA strand break repair). These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.  相似文献   

19.
Cancer stem cells (CSCs) are a subpopulation of cancer that can self-renew and differentiate into large tumor masses. Evidence accumulated to date shows that CSCs affect tumor proliferation, recurrence, and resistance to chemotherapy. Recent studies have shown that, like stem cells, CSCs maintain cells with self-renewal capacity by means of asymmetric division and promote cell proliferation by means of symmetric division. This cell division is regulated by fate determinants, such as the NUMB protein, which recently has also been confirmed as a tumor suppressor. Loss of NUMB expression leads to uncontrolled proliferation and amplification of the CSC pool, which promotes the Notch signaling pathway and reduces the expression of the p53 protein. NUMB genes are alternatively spliced to produce six functionally distinct isoforms. An interesting recent discovery is that the protein NUMB isoform produced by alternative splicing of NUMB plays an important role in promoting carcinogenesis. In this review, we summarize the known functions of NUMB and NUMB isoforms related to the proliferation and generation of CSCs.  相似文献   

20.
Recent findings suggest the possibility that tumors originate from cancer cells with stem cell properties. The cancer stem cell (CSC) hypothesis provides an explanation for why existing cancer therapies often fail in eradicating highly malignant tumors and end with tumor recurrence. Although normal stem cells and CSCs both share the capacity for self-renewal and multi-lineage differentiation, suggesting that CSC may be derived from normal SCs, the cellular origin of transformation of CSCs is debatable. Research suggests that the tightly controlled balance of self-renewal and differentiation that characterizes normal stem cell function is dis-regulated in cancer. Additionally, recent evidence has linked an embryonic stem cell (ESC)-like gene signature with poorly differentiated high-grade tumors, suggesting that regulatory pathways controlling pluripotency may in part contribute to the somatic CSC phenotype. Here, we introduce expression profile bioinformatic analyses of mouse breast cells with CSC properties, mouse embryonic stem (mES) and induced pluripotent stem (iPS) cells with an emphasis on how study of pluripotent stem cells may contribute to the identification of genes and pathways that facilitate events associated with oncogenesis. Global gene expression analysis from CSCs and induced pluripotent stem cell lines represent an ideal model to study cancer initiation and progression and provide insight into the origin cancer stem cells. Additionally, insight into the genetic and epigenomic mechanisms regulating the balance between self-renewal and differentiation of somatic stem cells and cancer may help to determine whether different strategies used to generate iPSCs are potentially safe for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号