首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
R.M. Holdo 《植被学杂志》2006,17(3):369-378
Questions: How does tree growth in a tropical woodland savanna vary as a function of size, and how is it affected by competition from neighbours, site attributes, and damage caused by disturbance? Location: western Zimbabwe. Methods: Trees of common species were tagged, mapped, and measured annually between 2001 and 2003 in a Kalahari sand woodland savanna. Diameter increments were analysed with mixed model regressions for the largest ramet in each genet. Stem diameter and damage, soil texture, and indices of competition at multiple spatial scales were used as covariates. Results: Stem diameter increased initially and then declined as a function of size in undamaged trees, which grew faster than damaged trees. Growth in damaged trees declined with size. No site differences were detected, and there was evidence for between‐tree competition on growth only in the fastest‐growing species, Brachystegia spiciformis. In several species the growth rate of the largest ramet increased as a function of the basal area of secondary ramets, contrary to expectations. For many species, the growth models showed poor explanatory power. Conclusions: Growth in Kalahari sand savanna trees varies as a function of size and changes in tree architecture caused by disturbance agents such as fire, frost, and elephant browsing. Disturbance may thus play an important role on vegetation dynamics through its effects on growth in the post‐disturbance phase. Growth is highly stochastic for some species in this system, and more deterministic in others. It is hypothesized that this dichotomy may be driven by differences in rooting depth among species.  相似文献   

3.
Impacts of large herbivores (>5 kg) on woody plants in African savannas are potentially most severe among plants shorter than 1.6 m. It is well established that severe browsing leads to longer shoots, yet prevents saplings from recruiting into adult size‐classes in African savannas. Increased shoot length, indicating faster shoot growth, is often associated with reduced concentrations of tannins and increased nutrient concentrations, suggesting carbon limitation. We hypothesized that, on average, large herbivores suppress stem height or circumference, but increase shoot length. We also hypothesized that if there were concomitant positive effects on nutrients, or negative effects on tannin concentrations, they would be greatest early in the wet season. We sampled saplings of four deciduous woody species (Acacia grandicornuta, Dichrostachys cinerea, Combretum apiculatum and Grewia flavescens) at different stages of the wet season in a large‐scale, long‐term herbivore exclusion experiment in Kruger National Park, South Africa. Plant height, shoot length and stem circumference were generally not adversely affected by large herbivores, suggesting C limitation is rarely present among deciduous saplings in semi‐arid African savannas, allowing them to tolerate browsing. Time since first rainfall emerged as a predominant factor consistently affecting nutrient and tannin concentrations, rather than large herbivores. Nitrogen and phosphorus generally decreased (by 20–50%), while condensed tannin concentration increased (150–350%) during the wet season, except for one species. We postulate that A. grandicornuta is less prone than other species to accumulating tannins during the wet season because of high investment of C in spines. Although nutrient and tannin concentrations were generally not affected by large herbivores, species‐specific responses were evident very early in the wet season, which is when herbivore populations are most likely to be affected by differential forage quality among plants.  相似文献   

4.
Although the effectiveness of topolins in plant tissue culture systems has recently been highlighted, there is a dearth of information on their interactions with auxins in relation to shoot organogenesis and secondary metabolite production. The current study evaluated the role of topolins singly or in combination with an auxin in comparison to 6-benzyladenine (BA) on shoot proliferation and secondary metabolite production of Huernia hystrix, a medicinal and ornamental stem-succulent of the endemic flora of southern Africa. Meta-topolin (mT) was more effective in improving shoot proliferation and phenolic production compared to BA. In general, the exogenous addition of α-naphthalene acetic acid (NAA) significantly increased shoot proliferation. The highest number of regenerated shoots (12.2 ± 0.98 shoots per explant) was recorded with medium containing 20 μM mT supplemented with 10 μM NAA and was three-times higher when compared to the treatments with cytokinin only. This suggests a synergistic interaction of auxin with cytokinin. On the other hand, supplementation with low NAA concentrations resulted in reduced in vitro flavonoid production in most cases, when compared to treatments with cytokinin only. Moreover, differences in cytokinin concentrations (even when used in combination with NAA equimolar concentrations) significantly affected secondary metabolite production in some cases. The current findings highlighted the differential effects of auxin-cytokinin interactions on shoot proliferation and the production of secondary metabolites in H. hystrix.  相似文献   

5.
Large herbivores, including livestock and ostrich, were counted along a 200-km long track in south-western Kalahari, Botswana. Altogether, 37 counts were made during different seasons. The number of animals seen and group size were recorded. These variables were compared with monthly and accumulated rainfall (number of animals and group size) and distance to pans (number of animals). Observations of game and livestock were also related to distance to villages. In four of the seven studied species, most animals were seen during the wet season. Group size also varied between seasons apart from the non-gregarious steenbok and duiker. Number of animals and group size were in some cases correlated with rainfall during the month of observation or with accumulated rainfall during the preceding months. The various species were more often observed close to pans than further away from the pans. Compared to livestock, game was on average observed >10 km further away from the villages. Few observations of game were made between village centres and the livestock observations most distant from the village.  相似文献   

6.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

7.
To determine whether systemic and/or intraovarian concentrations of insulin-like growth factor-I (IGF-I) are affected by short-term fasting, 24 heifers were blocked by weight and, within block, were assigned to one of three treatments: fasted for 0 h (controls; n = 8), fasted for 24 h (n = 8), or fasted for 48 h (n = 8). Blood plasma was collected every 8 h from -64 h to 0 h before ovariectomy (OVEX). OVEX was performed per vagina under local anesthesia during the follicular phase of an estrous cycle (36-42 h after synchronization with prostaglandin-F2 alpha). Follicular fluid (FFL) and granulosa cells were collected individually from follicles greater than or equal to 6 mm (large), and FFL was pooled from follicles 1.0-5.9 mm (small) in diameter. Fasting did not affect (p greater than 0.20) the number (mean +/- SE) of small (52 +/- 7) or large (1.5 +/- 0.4) follicles per heifer, specific binding of 125I-hCG to granulosa cells of follicles greater than or equal to 8 mm in diameter, or concentrations of progesterone in FFL of small follicles. At OVEX, body weight was less (p less than 0.01) for 24 h- and 48 h-fasted heifers (412 +/- 7 kg and 399 +/- 7 kg, respectively) than for 0 h-fasted heifers (442 +/- 7 kg). At OVEX, plasma concentrations of IGF-I were lower (p less than 0.05) in the 48 h-fasted group (105 +/- 8 ng/ml) than in the 0 h-fasted group (140 +/- 8 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Australian mammals have exhibited exceptionally high rates of decline since European settlement 230 years ago with much focus on small mammals in northern tropical savannas. In these systems, little scientific attention has been given to the suite of grazing macropods, family Macropodidae, (common wallaroo (Osphranter robustus), antilopine wallaroo (O. antilopinus) and agile wallaby (Notamacropus agilis)). These species may be impacted by feral herbivores and contemporary fire regimes, two threats linked to small mammal declines. A multi‐scale approach using aerial surveys, road surveys and camera trapping was utilised to determine the effects of feral cattle and fire on the distribution and abundance of large macropods in the North Kimberley bioregion. Feral cattle density and biomass exceeded that of macropods regardless of survey technique. Density estimates for cattle were up to 125 times higher (0.3–10.0 km?2) than estimates for macropods (0.08–0.49 km?2). Cattle biomass, based on the aerial survey estimates (corrected for perception bias), were 15 and 95 times higher than macropods for infertile (279 vs. 19 kg km?2) and fertile savannas (518 vs. 5 kg km?2), respectively. Proximity to the nearest pastoral station was a significant predictor of the aerial sightings of feral cattle (P ≤ 0.05). Abundance and foraging activity of cattle were positively associated (P ≤ 0.05) with recently burnt areas. In contrast, camera trapping showed agile wallaby and wallaroo occurrence and foraging were associated with longer unburnt areas (P ≤ 0.05). Agile wallaby and wallaroo were negatively associated with cattle (P ≤ 0.05) and showed substantial diurnal and seasonal separation consistent with an antagonistic interspecific interaction. Results also suggest that the agile wallaby is the primary prey of the dingo, not wallaroo. Collectively, this study suggests that recent landscape changes such as altered fire regimes and introduced herbivores have negatively impacted large grazing macropod species.  相似文献   

9.
Nutrient uptake and growth of barley as affected by soil compaction   总被引:15,自引:0,他引:15  
Arvidsson  Johan 《Plant and Soil》1999,208(1):9-19
A field experiment with different levels of compaction was carried out on a mouldboard ploughed silty clay, with the objective of studying the effects on plant nutrient uptake and growth. Soil from the field was also used in laboratory studies of carbon and nitrogen mineralization, and plant uptake of water and nutrients. In the field, low as well as high bulk densities reduced biomass production and nutrient uptake of barley (Hordeum vulgare L.) compared to intermediate bulk densities, where grain yield was approximately 20% higher. In the beginning of the growing season, the concentration of phosphorus and potassium was lowest in plants grown in the loosest and in the most compacted soil, and suboptimal for plant growth. The uptake of nutrients transported by diffusion was more affected by compaction than for nutrients transported by mass flow. The reasons for lowered uptake in loose compared to moderately compacted soil could be reduced root-to-soil contact, a low diffusion coefficient for nutrients and/or reduced mass transport of water to seed and roots. Differences in plant nutrient concentrations between treatments gradually declined until harvest. Immediately after compaction there was probably oxygen deficiency in the compacted soil since the air-filled porosity was critically low, but as the soil dried out, mechanical resistance to root growth may have become a more important growth-limiting factor. In the laboratory study, severe compaction reduced carbon mineralization and uptake of water and nutrients by roots, and caused denitrification. There were only small differences between loose and moderately compacted soil in carbon mineralization, nitrogen concentration in the soil, uptake of water and nutrients and dry matter yield. The large yield increase due to recompaction in the field was not reproduced in the laboratory. Possible reasons are differences in soil temperature between the field and laboratory, in the sowing and fertilizing methods, the pretreatment of the soil and in the spatial variability of bulk density. It is possible that recompaction is needed only in the uppermost part of the soil, which is the loosest, dries out first, and is where the seed as well as the fertilizer are placed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Plants defend themselves against herbivores not only by a single trait but also by diversified multiple defense strategies. It remains unclear how these multiple defense mechanisms are effectively organized against herbivores. In this study, we focused on Brassicaceae plants, which have one of the most diversified secondary metabolites, glucosinolates (GSLs), as a defense against herbivores. By analyzing various defense traits including GSL profiles among 12 species (11 genera) of Brassicaceae plants, it is revealed that their defense strategies can be divided into three categories as multiple defenses. The GSL profiles differed between these three categories: (i) high nutritional level with long‐chain aliphatic GSLs; (ii) low nutritional level and high physical defenses with short‐chain aliphatic GSLs; and (iii) high nutritional level and low defense. The feeding experiment was conducted using two types of herbivores, Pieris rapae (Lepidoptera: Pieridae) as a specialist herbivore and the Eri silkmoth Samia cynthia ricini (Lepidoptera: Saturniidae) as a generalist, to assess the ability of each plant in multiple defense strategy. It was observed that the Eri silkmoth's performance differed according to which defense strategy it was exposed to. However, the growth rate of P. rapae did not vary among the three categories of defense strategy. These results suggest that the diversified defense strategies of Brassicaceae species have evolved to cope with diversified herbivores.  相似文献   

11.
The presence of UV-absorptive substances in the epidermal cells of leaves is thought to protect mesophyll tissues from the harmful effects of UV-B radiation. We examined the influence of short-term UV-B exposures on UV-absorptive (330 nm) sinapates and flavonols, and on shoot growth of the Arabidopsis wild type ecotype Landsberg erecta and two mutants. 114 deficient in chalcone synthase, and 115 , deficient in chalcone/flavonone isomerase. Sequential ozone exposures were used to determine the effects of oxidative stress The levels of sinapates and flavonols on a leaf fresh weight basis increased substantially in the wild type and sinapates increased in the 114 mutant in vegetative vegetative/reproductive transitional and reproductive stage plants in response to short-term (48h) UV-B radiation. When UV-B was discontinued the levels generally decreased lo pre-exposure levels after 48 h in vegetative/reproductive but not in reproductive plants. Exposure to ozone before or alter UV-B treatment did not consistently affect the levels of these UV-absorptive compounds. Dry matter accumulation was less affected by UV-B at the vegetative and reproductive stages than at the vegetative/reproductive stage. At the vegetative/reproductive stage, shoot growth of all 3 genotypes was retarded by UV-B. Growth was not retarded by short-term ozone exposure alone but when exposure to ozone followed UV-B exposure, growth was reduced in all genotypes. Leaf cupping appeared on 115 plants exposed to UV-B.  相似文献   

12.
Two phases of bud activity were identified in the new growth of one-year-old erect coppice shoots on 11-year-old low-pruned stumps of mulberry (Morus alba L. cv. Shin-ichinose) in spring, the sprouting phase in which the majority of the buds, including the basal ones, sprout and elongate, and the dominance phase (starting 4–5 weeks after sprouting) during which the upper laterals begin to assert dominance and suppress the growth of lower laterals, becoming new leading shoots. In contrast, arching before sprouting markedly inhibited buds on the under side, leading to poor shoots. By late April, the sprouts on the upper side grew readily into new erect shoots, resulting in considerable dominance over those from the lateral sides. Of these erect shoots, those located closer to the stem base grew more in May and June. The effects of arching made during the sprouting phase (late April) on bud activity and shoot lengths were generally similar to those of earlier archings before spring bud bursting. Separation of the shoots from the upper and under sides by longitudinal, horizontal splitting of the arched stems in late April did not affect the inhibited elongation of the shoots from the under side. These results suggest that in the response to arching before and in late April, the effects are related to spring bud bursting and gravimorphism. In contrast, arching during and after the dominance phase (May) had no gravimorphic effects on growth of the shoots on the upper side, although there was a stimulation of outbreak of the buds on the upper side, which remained dormant during spring bud bursting. Continuous basal applications of abscisic acid in aqueous solution inhibited bud break and shoot growth of the postdormant erect stem segments, and defoliation of the new shoots markedly. In contrast, similar applications of an ethylene-releasing compound, Ethephon, depressed shoot elongation slightly, but enhanced defoliation greatly. Gibberellic acid (GA3) stimulated shoot elongation, but depressed leaf enlargement.  相似文献   

13.
We investigated whether concentrations of carboxylates in the rhizosphere of chickpea (Cicer arietinum L.) roots were related to soil phosphorus levels. In a field experiment, cultivar Sona was grown at two P levels on eight soil types at three locations. There were large differences in extractable (0.2 mM CaCl2) rhizosphere carboxylate concentrations amongst the locations. The effect of P fertiliser was variable and carboxylate concentrations depended on soil type. To examine the effect of soil P in more detail, a glasshouse experiment was carried out, in which three cultivars (Heera, Sona and Tyson) were grown at four P levels on one soil type. The biomass of chickpea plants increased with increasing P level of the soil, and the root mass ratio decreased at the highest soil P level. However, rhizosphere concentrations of the carboxylates malonate, malate and citrate did not differ significantly between P treatments. This implied that there was no simple relation between available P and root exudation rates, in contrast to earlier results in studies using hydroponics. Cultivars differed in carboxylate concentration pattern: Sona and Tyson showed a tendency towards increased rhizosphere carboxylate concentrations at the second harvest, whereas the carboxylate concentration of Heera tended to decrease. It is hypothesised that chickpea roots always exude a basal level of carboxylates into the rhizosphere. They only increase carboxylate exudation considerably when the P availability is extremely low, which may occur in soils that strongly bind P.  相似文献   

14.
In this study, the effects of cryopreservation on osmoregulation and ion homeostasis in bovine sperm were studied. We determined: (1) the osmotic tolerance limits and cell volume response upon exposure to anisotonic conditions, (2) the intracellular pH and potassium concentration, and (3) expression and localization of proteins encoding for potassium and chloride ion channels. A flow cytometric approach was used for simultaneous assessment of cell volume and viability of propidium iodide stained sperm in anisotonic media. Osmotic tolerance was found to be decreased after cryopreservation, especially in the 120 to 60 mOsm/kg osmotic range. The critical osmolality at which half of the sperm population survived increased from 55 to 89 mOsm/kg. The osmotic cell volume response for viable sperm was similar before and after cryopreservation, with an osmotic inactive volume of about 70%. The intracellular pH, determined by recording changes in carboxyfluorescein fluorescence of sperm in media with different pH before and after addition of digitonin, decreased from 6.28 in diluted sperm to 6.16 after cryopreservation. The intracellular potassium concentration, determined using the potassium ionophore nigericin and incubation in media with various potassium concentrations, increased from 154 mM to 183 mM before and after cryopreservation, respectively. The levels of the chloride and potassium ion channel proteins chloride channel 3 protein (CLC-3) and two pore domain potassium channel 2 protein (TASK-2), as detected using Western blot analysis, were not affected by cryopreservation. Immunolocalization studies showed that CLC-3 is present in the acrosome and midpiece as well as in the upper and lower tail. In conclusion, cryopreserved sperm exhibit reduced tolerance to hypotonic stress, a decreased intracellular pH, and increased intracellular potassium level.  相似文献   

15.
Efficacy of phloroglucinol in promoting growth and development of in vitro-derived shoot tips was studied in six potato (Solanum tuberosum L.) genotypes. Different concentrations of phloroglucinol (0, 0.08, 0.4, 0.8, 1.2 and 1.6 mM) were tested in combination with either 0.1 or 0.2 M sucrose in shoot tip proliferation medium based on MS (Murashige and Skoog, 1962) medium supplemented with 5.8 μM GA3 (gibberellic acid), 1.1 μM BA (N6-benzyladenine) and 8.39 μM D-calcium pantothenate. Phloroglucinol fostered multiple shoot formation, promoted axillary shoot proliferation in terms of shoot tip fresh weight and shoot length, and stimulated root formation on the shoot tips. There was significant phloroglucinol × sucrose interaction for number of shoots developed per shoot tip, shoot tip fresh weight and number of roots induced per shoot tip. The beneficial effect of phloroglucinol on shoot tip survival was conspicuous only in genotypes that showed poor survival in the control proliferation medium. There were significant differences in response between the two sucrose levels with regard to shoot tip fresh weight and number of roots per shoot tip. Phloroglucinol in combination with 0.2 M sucrose induced maximum number of roots per shoot tip. Optimum shoot tip growth was fostered in medium containing 0.8 mM phloroglucinol and 0.2 M sucrose. High frequency multiple shoot formation in this medium ensures a faster rate of potato shoot tip multiplication within a limited time and space. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Vasoactive intestinal peptide (VIP) is a neuropeptide released from the autonomic nerves exerting multiple antiinflammatory effects. The aim of the present study was to investigate the impact of severe sepsis and hemofiltration in two settings on plasma and tissue concentrations of VIP in a porcine model of sepsis. Thirty-two pigs were divided into 5 groups: 1) control group; 2) control group with conventional hemofiltration; 3) septic group; 4) septic group with conventional hemofiltration; 5) septic group with high-volume hemofiltration. Sepsis induced by faecal peritonitis continued for 22 hours. Hemofiltration was applied for the last 10 hours. Hemodynamic, inflammatory and oxidative stress parameters (heart rate, mean arterial pressure, cardiac output, systemic vascular resistance, plasma concentrations of tumor necrosis factor-alpha, interleukin-6, thiobarbituric acid reactive species, nitrate + nitrite, asymmetric dimethylarginine) and the systemic VIP concentrations were measured before faeces inoculation and at 12 and 22 hours of peritonitis. VIP tissue levels were determined in the left ventricle, mesenteric and coronary arteries. Sepsis induced significant increases in VIP concentrations in the plasma and mesenteric artery, but it decreased peptide levels in the coronary artery. Hemofiltration in both settings reduced concentrations of VIP in the mesenteric artery. In severe sepsis, VIP seems to be rapidly depleted from the coronary artery and, on the other hand, upregulated in the mesenteric artery. Hemofiltration in both settings has a tendency to drain away these upregulated tissue stores which could result in the limited secretory capacity of the peptide.  相似文献   

17.
Abstract Despite decades of research, the primary factors determining savanna structure remain elusive – a conundrum termed ‘the savanna problem’. After 47 years of annual burning in Terminalia woodland and Acacia/Combretum savanna on sandy, granite‐derived soils in the southern Kruger National Park, South Africa, a dense cover of trees and shrubs persists on some burnt plots and is largely absent from others. We postulated that intense browsing pressure by antelope and other herbivores prevents recruitment of trees in burnt plots and that herbivores concentrate on plots that are richest in nutrients. Herbivore abundance did not show a relationship with soil macronutrients and we consequently investigated micronutrient status. The reduction in tree cover as a result of annual burning was positively correlated with mass of herbivores (15–1500 kg) (r 2 = 0.61, n = 8). This index of herbivore abundance was in turn positively correlated with total Zn (r 2 = 0.64, n = 8). Other indices of herbivore abundance showed significant relationships with total clay content and total Mn. We suggest that herbivores concentrate on sites with greater clay content (possibly due to a greater availability of micronutrients), and that tree cover can remain relatively dense under a regime of annual burning if browsing pressure is not intense. The long‐term burn experiments in the Kruger National Park savanna provide a platform for unravelling the savanna problem. Determining possible interactions between soil properties, herbivory and fire is a step in this direction.  相似文献   

18.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   

19.
This study was designed to characterize, in anterior, mediobasal, and posterior hypothalamic and median eminence, the 24h changes of gamma aminobutyric acid (GABA) and taurine (TAU) contents in adult male rats and to analyze whether chronic hyperprolactinemia may affect these patterns. Rats were turned hyperprolactinemic by a pituitary graft. Plasma prolactin (PRL) levels increased after pituitary grafting at all time points examined. A disruption of the circadian rhythm was observed in pituitary-grafted rats, whereas GABA and TAU content followed daily rhythms in all areas studied in controls. In the mediobasal hypothalamus, two peaks for each amino acid were found at midnight and midday. In the anterior hypothalamus, GABA and TAU showed only one peak of concentration at midnight. In the posterior hypothalamus, the values of both GABA and TAU were higher during the light as compared to the dark phase of the photoperiod. In the median eminence GABA content peaked at 20:00h, the time when TAU exhibited the lowest values. Hyperprolactinemia abolished the 24h changes of GABA in the mediobasal hypothalamus and reduced its content as compared to controls. Hyperprolactinemia advanced the diurnal peak of TAU to 12:00h in the mediobasal hypothalamus and did not modify the 24:00h peak. In the anterior hypothalamus, hyperprolactinemia increased GABA and TAU contents during the light phase while it decreased them during the dark phase of the photoperiod. In the posterior hypothalamus hyperprolactinemia did not modify GABA or TAU patterns as compared to controls. In the median eminence hyperprolactinemia increased the 20:00h peak of GABA and shift advanced the decrease in TAU content at 20:00h and its maximum at 24:00h as compared to controls. These data show that GABA and TAU content exhibit specific daily patterns in each hypothalamic region studied. PRL differentially affects the daily pattern of these amino acids in each hypothalamic region analyzed.  相似文献   

20.
The long-term effect of tentoxin on K+;, Ca2+ and total phosphorus (P) concentrations in the roots and shoots of 7- and 14-day-old seedlings of winter wheat ( Triticum aestivum L. cv. Martonvásári-8) was studied. Growth (dry weight) and shoot to root ratios (dry weight and mineral concentrations) were also estimated. One p M tentoxin increased the shoot to root ratio for dry weight after a 14-day period of application. The concentration of Ca2+ slightly increased in the shoot. In roots, tentoxin caused a 30% higher accumulation of Ca2+ after 7 days, which did not change with treatment during the following 7 days. The accumulation of Ca2+ was enhanced by increasing concentrations of tentoxin. K+ and total P levels increased in roots but decreased in shoots after 7 days. However, they were redistributed between root and shoot during days 8–14 of tentoxin treatment. The effect of tentoxin is explained as a stimulation of ion transport mainly into the vacuoles of the immature metaxylem elements. It is suggested that tentoxin and other microbial products effective at very low concentrations may have a general significance in promoting plant infection or symbiosis via the modification of physiological or biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号