首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental conditions may influence the presence and strength of competitive interactions between different life forms, thereby shaping community composition and structure, and corresponding fuel dynamics. Woodland and shrubland communities of the Mediterranean climate region of South Eastern Australia contain a varied mixture of herbaceous and woody plants. The ratio of herbaceous to woody plants changes along gradients of temperature, moisture and soil fertility. This study aimed to experimentally examine the relative importance of, and interactions between environmental controls (moisture and soil fertility) on the balance of dominant herbaceous (Triodia scariosa) and woody plants (e.g. Acacia ligulata and Leptospermum coriaceum) and their ultimate effects on fuel and fire regimes. The results suggest that environmental determinants of the growth of T. scariosa are likely to be more important than interactions with shrubs in controlling the distribution of T. scariosa. The growth of T. scariosa was consistently higher under hot temperatures and on the less fertile yellow sands, which dominate the south of the region. The results suggest that there is strong potential for the distribution and abundance of T. scariosa to be altered in the future with changes in temperature associated with climate change. The distribution of soil types across the Mediterranean climate region of South Eastern Australia may be predisposed to favour the southerly expansion of T. scariosa‐dominated communities in the future under a warmer climate.  相似文献   

2.
Woody cover in African savannas: the role of resources, fire and herbivory   总被引:2,自引:0,他引:2  
Aim To determine the functional relationships between, and the relative importance of, different driver variables (mean annual precipitation, soil properties, fire and herbivory) in regulating woody plant cover across broad environmental gradients in African savannas. Location Savanna grasslands of East, West and Southern Africa. Methods The dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, browser + mixed feeder, and elephant biomass) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique. Results All variables were significant predictors of woody cover, collectively explaining 71% of the variance in our data set. However, their relative importance as regulators of woody cover varied. MAP was the most important predictor, followed by fire return periods, soil characteristics and herbivory regimes. Woody cover showed a strong positive dependence on MAP between 200 and 700 mm, but no dependence on MAP above this threshold when the effects of other predictors were accounted for. Fires served to reduce woody cover below rainfall‐determined levels. Woody cover showed a complex, non‐linear relationship with total soil phosphorus, and was negatively correlated with clay content. There was a strong negative dependence of woody cover on soil nitrogen (N) availability, suggesting that increased N‐deposition may cause shifts in savannas towards more grassy states. Elephants, mixed feeders and browsers had negative effects on woody cover. Grazers, on the other hand, depressed woody cover at low biomass, but favoured woody vegetation when their biomass exceeded a certain threshold. Main conclusions Our results indicate complex and contrasting relationships between woody cover, rainfall, soil properties and disturbance regimes in savannas, and suggest that future environmental changes such as altered precipitation regimes, N‐enrichment and elevated levels of CO2 are likely to have opposing, and potentially interacting, influences on the tree–grass balance in savannas.  相似文献   

3.
How does time‐since‐fire influence the structural recovery of semi‐arid, eucalypt‐dominated Murray‐Mallee shrublands after fire, and is recovery affected by spatial variation in climate? We assessed the structure and dynamics of a hummock grass, Triodia scariosa N.T. Burb, and mallee eucalypts – two key structural components of mallee shrublands – using a >100 year time‐since‐fire chronosequence. The relative influence of climatic variables, both individually and combined with time‐since‐fire, was modelled to account for spatial variation in the recovery of vegetation structural components. Time‐since‐fire was the primary determinant of the structural recovery of T. scariosa and eucalypts. However, climate, notably mean annual rainfall and rainfall variability, also influenced the recovery of the eucalypt overstorey, T. scariosa cover and mean hummock height. We observed that (i) the mean number of live eucalypt stems per individual decreased while mean individual basal area increased, (ii) cover of T. scariosa peaked at ~30 years post‐fire and gradually decreased thereafter, and (iii) the ‘hummock’ form of T. scariosa occurred throughout the chronosequence, whereas the ‘ring’ form tended not to occur until ~30 years post‐fire. Time‐since‐fire was the key determinant of the structural recovery of eucalypt‐dominated mallee shrublands, but there is geographical variation in recovery related to rainfall and its variability. Fire regimes are likely to have different effects across the geographic range of mallee shrublands.  相似文献   

4.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

5.
Factors governing landscape‐scale flammability are poorly understood, yet critical to managing fire regimes. Studies of the extent and severity of the 2003 Australian alpine fires revealed marked differences in flammability between major alpine plant communities, with the occurrence and severity of fire greater in heathland compared to grassland. To understand this spatial variation in landscape flammability, we documented variation in two physical properties of fuel – load and bulk density – at the life‐form and plant community scale. We measured the load (mass per unit area) and bulk density (mass per unit volume) of fine fuels (<6 mm) at 56 sites across the Bogong High Plains, southeastern Australia. Fine fuel load was positively correlated with shrub cover, and fine fuel bulk density was negatively correlated with shrub cover. Furthermore, fine fuel load and bulk density were accurately predicted using simple measures of canopy height and shrub cover. We also conducted a burning experiment on individual shrubs and snowgrass (Poa spp.) patches to assess comparative differences in flammability between these life‐forms. The burning experiment revealed that shrubs were more flammable than snowgrass as measured by a range of flammability variables. Consequently, our results indicate that treeless alpine landscapes of southeastern Australia are differentially flammable because of inherent life‐form differences in both fine fuel load and bulk density. If shrub cover increases in these alpine landscapes, as projected under climate change, then they are likely to become more flammable and may experience more frequent and/or severe fires.  相似文献   

6.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

7.

Questions

Fire regime alterations are pushing open ecosystems worldwide past tipping points where alternative steady states characterized by woody dominance prevail. This reduces the frequency and intensity of surface fires, further limiting their effectiveness for controlling cover of woody plants. In addition, grazing pressure (exotic or native grazers) can reinforce woody encroachment by potentially reducing fine-fuel loads. We investigated the effects of different fire energies on the herbaceous plant community, together with mammalian wildlife herbivory (exotic and native combined) exclusion, to inform best management practices.

Location

Texas semi-arid savanna, southern Great Plains, USA.

Methods

We conducted an experiment in which we manipulated fire intensity and herbivore access to herbaceous biomass in a split-plot design. We altered fire energy via fuel addition rather than applying fire under different environmental conditions to control for differences in standing biomass and composition attributable to differential plant physiological status and fire season.

Results

High-energy fire did not reduce herbaceous biomass or alter plant community composition, although it did increase among-plot variability in composition and forb biomass relative to low-energy fire and non-burned controls. Grazing pressure from native and non-native mammalian herbivores reduced above-ground herbaceous biomass regardless of fire treatments, but did not alter community composition.

Conclusions

Managers seeking to apply high-intensity prescribed fire to reduce woody encroachment will not negatively impact herbaceous plant productivity or alter community composition. However, they should be cognizant that repeated fires necessary for greatly reducing woody plants in heavily invaded areas might be difficult to accomplish due to fine-fuel reduction from wild herbivores. High fencing to restrict access by wildlife herbivores or culling might be necessary to build fuels sufficient to conduct high-intensity burns for woody-plant reduction.  相似文献   

8.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

9.
Questions: How are heathland vegetation dynamics affected by different goat grazing management? Location: Cantabrian heathlands in Illano, Asturias, northern Spain. Methods: During 4 years, vegetation dynamics (structural composition, canopy height and floristic diversity) were studied under three goat grazing treatments with three replicates: high stocking rate (11.7 goats ha?1) with a local Celtiberic breed, and high (15 goats ha?1) and low (6.7 goats ha?1) stocking rates with a commercial Cashmere breed. Results: The relative cover of woody plants, particularly heather species, decreased more while herbaceous cover increased more under local Celtiberic than under Cashmere breed grazing. Within Cashmere treatments, the cover and height of live shrubs decreased more and the herbaceous cover increased more under high than under low stocking rate. Redundancy analysis showed a significant effect of treatment × year interaction on floristic composition. Greater species richness was recorded under local goat grazing, but Shannon diversity index fell in the fourth year on these plots because of dominance by two grass species. Conclusions: Local Celtiberic goat grazing at such a high stocking rate (11.7 goats ha?1) hinders the development of sustainable systems on these heathlands, both in environmental and productive terms, owing to the limitations in soil fertility. Nevertheless, Celtiberic goats could be useful for controlling excessive shrub encroachment and reducing fire hazard. Cashmere goat grazing at high stocking rate promoted the highest Shannon diversity by generating a better balance between woody and herbaceous plants, while shrub dominance was not altered under the low stocking rate.  相似文献   

10.
The ingression of woody plants into the grassy layer of savannas and grasslands has become a global concern. The increase of woody plants has been primarily attributed over grazing, fire and more recently to the increase of atmospheric CO2. We used long-term observations and analyses to assess changes in woody vegetation in Ithala Game Reserve (IGR), South Africa. Textural analysis of aerial photographs was used to detect changes in woody vegetation, from 1943 to 2007 in Ithala Game Reserve (IGR), South Africa. Daily rainfall data from 1905 to 2009 were used in a time-series analysis to determine if rainfall patterns have changed. The time-series analysis showed that the low magnitude (0–10 mm) rainfall events decreased from 1916 to 2009 and high magnitude rainfall events increased (10–20 and >20 mm). The mean annual rainfall increased from ~700 to ~850 mm from the 1930s to the 2000s. This change in rainfall was a key factor in the increase in woody vegetation from 1943 to 2009. We also used field data from the same reserve collected over 30 years to assess the increases in tree cover. Tree cover and density increased significantly by 32.5% and 657.9 indiv ha?1 respectively, over 64 years. Before the proclamation of IGR in 1972, increases in woody vegetation from 1943 were non-significant. After the proclamation of IGR, herbivore population numbers and spatial distribution influenced the accumulation of grassy biomass required to fuel fires. In areas with reduced fuel loads, the consequential suppression of fire accelerated the rate of woody plant invasion into savannas. The increase in woody vegetation coincided with a decrease in palatable (e.g. Acacia gerrardii and Acacia davyi) and an increase in unpalatable woody plants. The avoidance of the unpalatable trees (e.g. Euclea and Searsia species) by large mammalian herbivores has allowed these trees to increase in density relatively unhindered.  相似文献   

11.
Hierro JL  Clark KL  Branch LC  Villarreal D 《Oecologia》2011,166(4):1121-1129
Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus), reduces and increases fire intensity at different stages in its population cycle in the semiarid scrub of Argentina. Specifically, we hypothesized that, when colonies are active, vizcachas create natural fire-breaks through intense grazing, generating over time patches of large unburned shrubs in grazed zones. In contrast, when colonies are abandoned, recovery of fine fuels and previous accumulation of coarse wood on colonies during territorial displays increases fire intensity, creating patches of high shrub mortality. To test these hypotheses, we estimated stem age of the dominant shrub (Larrea divaricata) and measured aboveground biomass in zones actively grazed by vizcachas and in ungrazed zones, and compared densities of live and dead shrubs on abandoned colonies and adjacent zones following fire. In active colonies, age and biomass of shrubs were much greater in grazed than ungrazed zones. In abandoned colonies that had been burnt, density of dead, burned shrubs was higher and density of live shrubs was lower than in adjacent zones. These results support our hypotheses and reveal a new interaction between native herbivores and fire, in which herbivores augment fire intensity by gathering fuel. Our findings indicate that, through opposing effects on fire, native herbivores enhance the heterogeneity of vegetation in woody-dominated ecosystems.  相似文献   

12.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

13.
Encroachment of woody plants has been among the major threats to the livelihoods of Borana pastoralists and their ecosystem. An approach that integrated vegetation survey and pastoralists’ perception was followed to study the impacts of encroachment of woody plants in the Borana lowlands, Ethiopia. Density of woody species was determined in 192 plots of 500 m2. Canopy cover of woody plants was estimated in 123 quadrates of 400 m2. Pastoralists’ perception was assessed through group discussions and a semi‐structured questionnaire. Results showed that plant density was 3014 woody plants ha?1. Cover of woody plants was 52%, indicating an increasing trend from ≤40% cover reported in the early 1990s. It was concluded that the increase of woody plants density and cover has crossed the critical threshold and has entered into the encroached condition. Principal components analysis (PCA) and redundancy analysis (RDA) also showed that woody plants were negatively correlated with herbaceous biomass. Commiphora africana, Acacia melliphera, A. drepanolobium, A. brevispica and Lannea rivae were among the dominant encroachers. RDA revealed that soil nutrients were positively correlated with woody plants density and cover. The pastoralists perceived that encroachment of woody plants had decreased the production of their grazingland. A ban on fire was perceived as the major factor that caused encroachment of woody plants. Re‐utilization of fire and strengthening of traditional rangeland management strategies are recommended.  相似文献   

14.
We studied the soil seed bank in a possible scenario of fire regime shift and asked: (1) Does high fire frequency impact the density of seeds stored, species richness and evenness? (2) Overall, does high fire frequency produce changes in the presence–absence and abundance of species? The study was implemented in a Mediterranean Basin ecosystem in plots with increasing fire frequency (unburned, burned once and burned twice in the last 66 years). The number of seeds increased with fire frequency for all life forms (shrub, scrub, perennial forb, annual forb and perennial graminoid). Species richness of annual forbs also increased. Evenness of shrubs diminished because the number of seeds in all the species decreased, except C. albidus, which increased. Overall, differences in the abundance of species were found, mainly by depleting shrubs and increasing forbs. There were no differences in the presence–absence data. In conclusion, high fire frequencies act as a filtering factor for species of a larger size and advanced maturity age. In contrast, life forms of small size and rapid onset of reproductive maturity can be enhanced. This community conversion from woody to herbaceous soil seed banks is fundamental to identify vegetation changes in future regimes of high fire frequency.  相似文献   

15.
For the past century, woody plants have increased in grasslands and savannas worldwide. Woody encroachment may significantly alter ecosystem functioning including fire regimes, herbivore carrying capacity, biodiversity and carbon storage capacity. Traditionally, increases in woody cover and density have been ascribed to changes in the disturbance regime (fire and herbivores) or rainfall. Increased atmospheric CO2 concentrations may also contribute, by increasing growth rates of trees relative to grasses. This hypothesis is still heavily debated because usually potential CO2 effects are confounded by changes in land use (disturbance regime). Here we analyse changes in woody density in fire experiments at three sites in South African savannas where the disturbance regime (fire and herbivores) was kept constant for 30 and 50 years. If global drivers had significant effects on woody plants, we would expect significant increases in tree densities and biomass over time under the constant disturbance regime. Woody density remained constant in a semiarid savanna but tripled in a mesic savanna between the 1970s and 1990s. At the third site, a semiarid savanna near the southern limits of the biome, tree density doubled from the mid 1990s to 2010. Interpretation of the causes is confounded by population recovery after clearing, but aerial photograph analysis on adjacent non‐cleared areas showed an accompanying 48% increase in woody cover. Increased CO2 concentrations are consistent with increased woody density while other global drivers (rainfall) remained constant over the duration of the experiments. The absence of a response in one semiarid savanna could be explained by a smaller carbon sink capacity of the dominant species, which would therefore benefit less from increased CO2. Understanding how savannas and grasslands respond to increased CO2 and identifying the causes of woody encroachment are essential for the successful management of these systems.  相似文献   

16.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

17.

Aim

Past analyses of satellite‐based fire activity in tropical savannas support the intermediate fire–productivity hypothesis (IFP), which posits a close correlation with estimates of total net primary productivity in drier savannas and declines towards the extremes. However, these analyses ignore the distinct roles played by herbaceous and woody vegetation in fire ignition and spread. We hypothesize that, as herbaceous vegetation provides the primary fuel, fire activity in African savannas is asymptotically correlated with herbaceous production. Conversely, woody production affects fires indirectly through effects on herbaceous production and its connectivity. In contrast to the IFP, we propose the fuel, cure and connectivity (FCC) conceptual model for tropical fire activity. The FCC model makes explicit the distinct role of herbaceous and woody fuels, avoiding the confounding interpretation of the role of total production, while providing opportunities to quantify fuel curability, effects of trees on herbaceous fuel growth and connectivity, and human management.

Location

Sub‐Saharan Africa (SSA).

Time period

2003–2015.

Major taxa studied

Woody and herbaceous vegetation.

Methods

We used boosted regression tree analysis to test competing models explaining fire activity: (a) aggregate fuel loads; and (b) partitioned woody and herbaceous fuel loads; both derived from MODIS leaf area index.

Results

Herbaceous fuel load was consistently most influential, providing more explanatory power than overall biomass in fire activity. Fuel curability rated second, then human population density (HPD), and woody biomass was least important. We observed an asymptotic relationship between herbaceous fuel load and fire activity consistent with the FCC model; trees promote fires at low densites but suppress fires at higher densities; fires were rare in wetter regions, emphasizing the need for fuel to cure; and fires were concentrated in areas of low human population, underscoring the crucial role of land management.

Conclusions

The proposed FCC framework provides a more nuanced understanding of fire activity in tropical ecosystems, where herbaceous biomass is the key determinant of fire activity.  相似文献   

18.
Questions: What is the effect of herbaceous layer on seedling establishment of three woody pioneer species in open areas of central Chile under a semi‐arid mediterranean climate? How do inter‐annual and habitat conditions (slope aspect) modulate this effect? Under high stress conditions such as the drier year and habitat (north‐facing slope) do herbs reach low abundance and have neutral effects on woody seedlings? Under medium stress conditions for these woody species, such as the wetter year and south‐facing slope, does the herbaceous layer reach greater abundance and have positive effects on woody seedlings due to increasing soil water content? Location: A watershed on the outskirts of Santiago, Chile, subjected to clearing of woody vegetation through firewood extraction and human‐set fires. Methods: In spring 2007, we set up 20 plots (3 m × 2 m). Half of each plot had herbs removed manually and by application of herbicide. In both halves of each plot, one seedling (8 months old) of each of the three native woody species (Colliguaya odorifera, Schinus polygamus and Quillaja saponaria) was planted and survival monitored subsequently. The experiment was repeated in two consecutive growing seasons (2007–2008 and 2008–2009) that differed significantly in total precipitation (152 and 256.5 mm, respectively), and replicated in two sites that differed in aspect and abiotic conditions: a moister south‐ and a drier north‐facing slope. Results: In the first and drier year, the herbaceous layer had low cover and no significant effect on seedling survival of woody species. During the second year, herbs had greater cover and a significant positive effect on spring survival of C. odorifera in the north‐facing slope, which was lost after summer. During this wetter year on the south‐facing slope, herb cover had a positive effect on survival of S. polygamus (mainly during summer). Conclusions: The role of mostly ruderal herbs on woody seedling establishment depended on the species, rainfall of the current year and slope aspect, and may be explained by soil moisture patterns. This suggests that the effect of ruderal herbs on woody seedlings shifts from neutral under high stress conditions produced by drought to positive under moderate stress conditions. Our results contribute to understand interactions between ruderal herbs and woody species under contrasting abiotic conditions. Therefore, control of the herbaceous layer may not be needed in restoration programmes for this region. Moreover, herbs may benefit restoration of woody cover in mesic habitats.  相似文献   

19.
We compared two basic assumptions about the woody cover distribution in tropical and subtropical areas: the equilibrium (woody cover always reaches a long-term steady state) vs the non-equilibrium assumption (woody cover fluctuates in response to fire disturbances). We considered two models each one representative of one of the two assumptions: an equilibrium and a non-equilibrium model. The equilibrium model considered fire as an a priori determined parameter, whereas the non-equilibrium model assumed fires as stochastic events whose probability increased with grass density. We compared the results of the models with large datasets containing woody cover values sampled at the continental and at the global scale. In particular, we focused on two evidences shown by data. The first evidence is that woody cover is limited by water scarcity for low rainfall values and by fire for high rainfall values (arid–moist savanna distinction). The second evidence is the bimodality of woody cover data observed for high rainfall values. The equilibrium model gave a static interpretation of the data. The non-equilibrium model, instead, gave a more general interpretation of the data. In particular, the non-equilibrium model detected the arid–moist savanna distinction as emergent along a rainfall gradient and demonstrated that the bimodality observed in the woody cover data could be obtained in the woody cover values exhibited by a vegetation system in different times. Thus, woody cover data do not necessarily represent steady states. Rather, they could represent snapshots of a vegetation system in certain time instants.  相似文献   

20.
Phalaris arundinacea L. is an aggressive species that can dominate wetlands by producing monotypic stands that suppress native vegetation. In this study invasion windows were created for native species in monotypic stands of P. arundinacea with either fire or herbicide. Three native species groups, herbaceous plants, herbaceous seeds, and woody shrubs, were planted into plots burned or treated with herbicide in the early spring. Fire did not create an effective invasion window for native species; there was no difference in P. arundinacea root and shoot biomass or cover between burned and control plots (p≥ 0.998). Herbicide treatment created an invasion window for native species by reducing P. arundinacea root and shoot biomass for two growing seasons, but that invasion window was fast closing by the end of the second growing season because P. arundinacea shoot biomass had nearly reached the shoot biomass levels in the control plots (p= 0.053). Transplant mortality, frost, and animal herbivory prevented the herbaceous species and woody seedlings from becoming fully established in the plots treated with herbicide during the first year of the experiment. Transplanted monocots had a greater survival than dicots. By the second growing season the herbaceous group had the greatest mean areal cover (5%), compared to the woody seedlings (3%) and seed group (0%). Long‐term monitoring of the plots will determine whether the herbaceous transplants will compete effectively with P. arundinacea and whether the woody species will survive, shade the P. arundinacea, and accelerate forest succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号