首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.  相似文献   

2.
Invasive plants strongly affect physical and biotic environments of native ecosystems. Insects and other arthropods as one of the major components of many ecosystems are very sensitive to subtle changes in abiotic and biotic environments. We examined the effects of exotic Spartina alterniflora invasion on community structure and diets of arthropods in a saltmarsh previously dominated by native Phragmites australis in Yangtze River estuary through net sweeping and plant harvesting methods and stable isotope analysis. Our results showed that diversity indices were not significantly different between exotic and native plant communities, but the total abundance of insects estimated through plant harvesting method was found to be lower in Spartina monoculture than that in Phragmites monoculture. Community structure of insects in Spartina monoculture was dissimilar to that in Phragmites monoculture and PhragmitesSpartina mixture. Moreover, stable carbon isotope patterns of arthropods were significantly different between Phragmites and Spartina monocultures. Although some native arthropods (perhaps generalists) shifted their diets, many native taxa did prefer Phragmites to Spartina even in Spartina monoculture. Spartina invasions resulted in reduced abundances of some arthropds, and increased dominance of others feeding preferably on Spartina. This study provides evidence that invasive plants can change the community structure and diets of native arthropods, which will eventually alter the arthropod food web, and affect the integrity and functioning of native ecosystems within a nature reserve that has been set aside for conserving the native biodiversity and maintaining the ecosystem integrity. In this sense, Spartina invasions in the Yangtze River estuary need to be managed appropriately.  相似文献   

3.
Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.  相似文献   

4.
Omnivores can impact ecosystems via opposing direct or indirect effects. For example, omnivores that feed on herbivores and plants could either increase plant biomass due to the removal of herbivores or decrease plant biomass due to direct consumption. Thus, empirical quantification of the relative importance of direct and indirect impacts of omnivores is needed, especially the impacts of invasive omnivores. Here we investigated how an invasive omnivore (signal crayfish, Pacifastacus leniusculus) impacts stream ecosystems. First, we performed a large-scale experiment to examine the short-term (three month) direct and indirect impacts of crayfish on a stream food web. Second, we performed a comparative study of un-invaded areas and areas invaded 90 years ago to examine whether patterns from the experiment scaled up to longer time frames. In the experiment, crayfish increased leaf litter breakdown rate, decreased the abundance and biomass of other benthic invertebrates, and increased algal production. Thus, crayfish controlled detritus via direct consumption and likely drove a trophic cascade through predation on grazers. Consistent with the experiment, the comparative study also found that benthic invertebrate biomass decreased with crayfish. However, contrary to the experiment, crayfish presence was not significantly associated with higher leaf litter breakdown in the comparative study. We posit that during invasion, generalist crayfish replace the more specialized native detritivores (caddisflies), thereby leading to little long-term change in net detrital breakdown. A feeding experiment revealed that these native detritivores and the crayfish were both effective consumers of detritus. Thus, the impacts of omnivores represent a temporally-shifting interplay between direct and indirect effects that can control basal resources.  相似文献   

5.
As climate variability increases in low-resource environments, the ability of native and invasive species to tolerate stress and respond to large, ephemeral resource pulses will strongly influence plant fitness and, consequently, competitive outcomes. We examined how native and invasive species occurring in arid coastal sage scrub communities in southern California responded to water and high-light stress. We also examined how plants responded to irrigation following short-term water stress. While species responded differently to water and light treatments, no general pattern emerged between native and invasive species. Photosynthetic function of Ricinus communis (invasive) and Salvia mellifera (native) was most robust to water stress and most responsive to irrigation following water stress. Leaf transpiration data suggested that Ricinus and Salvia maintained photosynthetic function by high water use efficiency rather than higher water status via large root biomass. Brassica nigra (invasive) and Encelia californica (native) were more resistant to photoinhibition in response to high-light stress than Ricinus, Salvia, Artemesia californica (native) or Nicotiana glauca (invasive). Our data suggest that native and invasive species in these arid systems display a range of physiological responses to stress and that strategies for invasive species control or native ecosystem restoration based on plant responses to stress may require species-specific approaches.  相似文献   

6.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

7.
The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants—especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.  相似文献   

8.
Understanding the determinants of early invasion resistance is a major challenge for designing plant communities that efficiently repel invaders. Recent evidence highlighted the significant role of priority effects in early community assembly as they affect species composition, structure and functional properties, but the consequences of native community assembly history on the success of subsequent invasions has not been elucidated yet. In a greenhouse experiment, we investigated how (1) the identity of the first native colonizing species (one of two grasses: Dactylis glomerata and Lolium perenne, or two legumes: Onobrychis viciifolia and Trifolium repens), each introduced four weeks before the rest of the native community, and (2) timing of species establishment (synchronous vs. sequential sowing), influenced early establishment success of Ambrosia artemisiifolia, an annual noxious weed in Europe. First colonizer identity and establishment timing both affected early biomass production and composition of the community, and had implications for A. artemisiifolia early invasion success. Invasion success decreased when all native individuals were sown simultaneously, quickly generating a high biomass production, while it increased when the productive N-fixing legume T. repens was sown first. These findings support that native species assembly history matters to invasion resistance in the early growth stages, thus opening the way to more effective invasive species management strategies in restoration.  相似文献   

9.
Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.  相似文献   

10.
Invasive plants that displace native floral communities can cause changes to associated invertebrate species assemblages. Using a mini‐review of the literature and our own data we add to the still considerable debate about the most effective methods for testing community‐level impacts by invasive species. In endangered saltmarshes of southeast Australia, the non‐native rush Juncus acutus L. is displacing its native congener J. kraussii Hochst., with concurrent changes to floral and faunal assemblages. In two coastal saltmarshes, we tested the hypothesis that the ability to detect differences in the invertebrate assemblage associated with these congeneric rushes depends on the microhabitat of the plant sampled. We used three sampling methods, each targeting specific microhabitats: sweep netting of the plant stems, vacuum sampling of the plant tussock, and vacuum sampling of the ground directly below the plants. Over 3800 individuals and 92 morphospecies were collected across four main taxa: gastropods, crustaceans, hexapods and arachnids. Detection of differences in invertebrate density, richness and composition associated with native compared with non‐native rushes was dependent on the microhabitat sampled and these differences were spatially variable. For example, at one saltmarsh the stems and tussock of J. acutus had a lower density and richness of total invertebrates and hexapods than those of the native J. kraussii. In contrast, crustaceans on the ground were in greater abundance below J. acutus than J. kraussii. This study demonstrates that on occasions where overall differences in the assemblage are not detected between species, differences may become apparent when targeting different microhabitats of the plant. In addition, separately targeting multiple microhabitats likely leads to a greater probability of detecting impacts of invasion. Comparing the invertebrate assemblage without differentiating between or sampling an array of microhabitats can fail to determine the impact of invasive species. These results highlight that a combination of methods targeting different microhabitats is important for detecting differences within the invertebrate community, even for phylogenetically related species.  相似文献   

11.
The direct and indirect interactions of invasive ants with plants, insect herbivores, and Hemiptera are complex. While ant and Hemiptera interactions with native plants have been well studied, the effects of invasive ant–scale insect mutualisms on the reproductive output of invasive weeds have not. The study system consisted of Argentine ants (Linepithema humile), boneseed (Chrysanthemoides monilifera monilifera), and sap-sucking scale insects (Hemiptera: Saissetia oleae and Parasaissetia nigra), all of which are invasive in New Zealand. We examined the direct and indirect effects of Argentine ants on scale insects and other invertebrates (especially herbivores) and on plant reproductive output. Argentine ants spent one-third of their time specifically associated with scale insects in tending behaviours. The invertebrate community was significantly different between uninfested and infested plants, with fewer predators and herbivores on ant-infested plants. Herbivore damage was significantly reduced on plants with Argentine ants, but sooty mould colonisation was greater where ants were present. Herbivore damage increased when ants were excluded from plants. Boneseed plants infested with Argentine ants produced significantly more fruits than plants without ants. The increase in reproductive output in the presence of ants may be due to increased pollination as the result of pollinators being forced to relocate frequently to avoid attack by ants, resulting in an increase in pollen transfer and higher fruit/seed set. The consequences of Argentine ant invasion can be varied; not only does their invasion have consequences for maintaining biodiversity, ant invasion may also affect weed and pest management strategies.  相似文献   

12.
Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pes-caprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.  相似文献   

13.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   

14.
The exotic plant Spartina alterniflora is expanding rapidly along China''s coast regions, seriously threatening native ecosystems. Soil bacteria are important for biogeochemical cycles, including those of carbon, nitrogen, and sulfur, in wetland ecosystems. There is growing evidence that microorganisms are important in case of plant invasion. In the present study, we studied the interlacing area of S. alterniflora and Suaeda heteroptera, selected soil of invaded and non‐invaded regions and explored the effect of the composition and diversity of bacterial communities in coastal wetlands. The bacterial community composition of invasive and noninvasive areas was subjected to high‐throughput sequencing. In the five areas tested, the main bacterial phyla were Proteobacteria, Bacteroides, and Acidobacteria; the richness of the bacterial community in the soil increased after S. alterniflora invasion, most changes occurred at the genus level. The relative abundances of Desulfobulbus and Sulfurovum were higher in invasive areas than in noninvaded areas. PCA, RDA, and LEfSe analyses found that the S. alterniflora invasion significantly influenced the bacterial community and physicochemical properties of wetland soil. In conclusion, soil microbial community composition was tightly associated with S. alterniflora invasion. This study provide an important scientific basis for further research on the invasion mechanism of Salterniflora.  相似文献   

15.
Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.  相似文献   

16.
Multiple disturbances to ecosystems can influence community structure by modifying resistance to and recovery from invasion by non-native species. Predicting how invasibility responds to multiple anthropogenic impacts is particularly challenging due to the variety of potential stressors and complex responses. Using manipulative field experiments, we examined the relative impact of perturbations that primarily change abiotic or biotic factors to promote invasion in coastal salt marsh plant communities. Specifically we test the hypotheses that nitrogen enrichment and human trampling facilitate invasion of upland weeds into salt marsh, and that the ability of salt marsh communities to resist and/or recover from invasion is modified by hydrological conditions. Nitrogen enrichment affected invasion of non-native upland plants at only one of six sites, and increased aboveground native marsh biomass at only two sites. Percent cover of native marsh plants declined with trampling at all sites, but recovered earlier at tidally flushed sites than at tidally restricted sites. Synergistic interactions between trampling and restricting tidal flow resulted in significantly higher cover of non-native upland plants in trampled plots at tidally restricted sites. Percent cover of non-native plants recovered to pre-trampling levels in fully tidal sites, but remained higher in tidally restricted sites after 22 months. Thus, perturbations that reduce biotic resistance interact with perturbations that alter abiotic conditions to promote invasion. This suggests that to effectively conserve or restore native biodiversity in altered systems, one must consider impacts of multiple human disturbances, and the interactions between them. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
T. J. Mason  K. French  D. Jolley 《Oecologia》2013,173(2):557-568
Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.  相似文献   

18.

Aims

We compared the degree of arbuscular mycorrhizal fungi (AMF) colonization on an invasive, Triadica sebifera, and two native, Baccharis halimifolia and Morella cerifera, woody species that occur in coastal Mississippi, USA. Specifically, we investigated how the degree of colonization affects growth of these species and assessed potential allelopathic effects of T. sebifera on the two native species.

Methods

A field study and a greenhouse experiment were used to determine the degree of AMF colonization on focal woody species. Seedling growth of these species was compared between active (fungicide untreated) and AMF-suppressed (fungicide treated) soils in the greenhouse experiment. In a second greenhouse experiment, we tested the potential allelopathic effects of T. sebifera on the native species by growing the natives in soils from T. sebifera invaded or uninvaded regions, with and without activated carbon (AC).

Results

The invasive species, Triadica sebifera, exhibited a higher degree of AMF colonization compared to the native species and significantly higher total biomass in active soils compared to AMF-suppressed soils. Seedling biomass and AMF colonization of native B. halimifolia and M. cerifera did not differ between T. sebifera invaded and uninvaded soils, irrespective of the application of AC.

Conclusions

Results suggest that invasive T. sebifera benefits from the presence of AMF, which might facilitate establishment of this invader. Results also suggest that allelopathy is not a likely mechanism of T. sebifera invasion in coastal transition ecosystems. A higher degree of AMF colonization, relative to native co-occurring species, may partly explain the successful invasion of T. sebifera into coastal plant communities of the southeastern USA.  相似文献   

19.
Invasive African olive, Olea europaea ssp. cuspidata (Wall. ex G.Don) Cif., forms increasingly dense stands between initial and mature stages of invasion, leading to a progressive decline in native plant diversity. Here, we examined the response of leaf-litter invertebrates to increasing time since olive invasion. We compared invertebrate assemblages among early-stage olive (0–7 years since invasion, scattered olive shrubs and seedlings in native woodland), mature olive (>15 years, uniform olive stands dominated by multi-trunked trees) and uninvaded native grassy woodland habitats (both mature stands and edges) in a critically endangered ecological community of south-eastern Australia. Invertebrate species richness was significantly reduced in mature olive compared with early-stage olive and mature native woodland habitats. Species richness did not differ significantly between early-stage olive habitat and mature native woodland, demonstrating resistance in species richness to initial invasion. Invertebrate species composition of native woodlands differed significantly from both mature olive and early-stage olive habitats, demonstrating a lack of resistance in species composition to initial olive invasion. Compositional differences were principally driven by reduced abundances within Coleoptera, Hymenoptera and Polyxenida in mature olive habitat compared with mature native woodland. These changes were significantly correlated with an increase in bare ground, plant canopy cover and litter depth, and higher moisture and lower temperature within leaf litter, in mature olive habitat. Our findings show that negative ecological impacts of invasive African olive extend beyond plants to leaf-litter invertebrate assemblages and that significant impacts on invertebrate species assemblage composition occur early in the invasion process.  相似文献   

20.
While several studies have shown that invasive plant effects on soil biota influence subsequent plant performance, corresponding studies on how invasive animals affect plants through influencing soil biota are lacking. This is despite the fact that invasive animals often indirectly alter the below-ground subsystem. We studied 18 offshore islands in northern New Zealand, half of which have been invaded by rats that are predators of seabirds and severely reduce their densities, and half of which remain non-invaded; invasion of rats thwarts seabird transfer of resources from ocean to land. We used soil from each island in a glasshouse experiment involving soil sterilization treatments to determine whether rat invasion indirectly influences plant growth through the abiotic pathway (by impairing seabird-driven inputs to soil) or the biotic pathway (by altering the soil community). Rat invasion greatly impaired plant growth but entirely through the abiotic pathway. Plant growth was unaffected by the soil community or its response to invasion, meaning that the responses of plants and soil biota to invasion are decoupled. Our results provide experimental evidence for the powerful indirect effects that predator-instigated cascades can exert on plant and ecosystem productivity, with implications for the restoration of island ecosystems by predator removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号