首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In forest headwater streams where the riparian canopy limits autochthonous primary production, leaf litter decomposition is a key process controlling nutrient and carbon cycling. Any alteration of the riparian vegetation may influence litter decomposition and detrital food webs. We evaluated the effect of non-native Platanus hybrida riparian plantations on leaf litter decomposition in Mediterranean streams. The experiment was conducted in six headwater streams; three lined by native riparian vegetation and three crossing P. hybrida plantations. We have characterized the processing rates of alder leaves and the assemblages of shredder macroinvertebrates and fungi. Litter decomposition was significantly faster in the P. hybrida than in the reference streams. Although the dissolved inorganic nitrogen concentration was higher in P. hybrida, no significant effect was observed in decomposition rates. Differences in decomposition rates reflected the macroinvertebrate and shredder colonization in alder litter, with higher abundance and richness in the P. hybrida streams. However, aquatic hyphomycete sporulation rate was higher in reference streams, suggesting that the variation in decomposition rates is a direct consequence of shredder abundance. Our findings support part of the substrate quality-matrix quality (SMI) hypothesis, which expects that high-quality litter will show increased decomposition rates in a low-quality litter matrix.  相似文献   

2.
Although several hypotheses aim to explain insect herbivory on plants, the relative importance of plant traits, environment, and organizational scale (i.e., individual or community) to herbivory damage level is not well understood. We used an approach based on a local scale, divided into individual and community levels, to test if plant traits, soil characteristics, and plant density explain leaf damage. We sampled 983 individuals in 49 plots distributed over dense and open savanna formations in Emas National Park. In order to explain plant damage, we performed a multi-model inference analysis of four plant traits associated with plant damage, five soil characteristics, and plant density. We did not find any support to plant vigor or plant stress hypotheses at individual plant level. However, the resource concentration hypothesis and plant stress hypothesis explained leaf damage at the community level. We found that increased availability of calcium (Ca) in soils reduced plant damage at the community level. Because soil Ca concentration is a major constraint to plant development in the Brazilian savanna, we postulated that its increasing availability permits plants to invest more in defense strategies. We demonstrate that plant density, Ca soil concentration, and leaf size can be used to predict the plant damage suffered by woody species in savannas at community level.  相似文献   

3.
1. Of the relatively few studies that have examined consequences of amphibian declines on stream ecosystems, virtually all have focused on changes in algae (or algal‐based food webs) and little is known about the potential effects of tadpoles on leaf decomposition. We compared leaf litter decomposition dynamics in two neotropical streams: one with an intact community of tadpoles (with frogs) and one where tadpoles were absent (frogless) as a result of a fungal pathogen that had driven amphibians locally extinct. The stream with tadpoles contained a diverse assemblage (23 species) of larval anurans, and we identified five species of glass frog (Centrolenidae) tadpoles that were patchily distributed but commonly associated with leaf detritus and organic sediments in pools. The latter reached total densities of 0–318 tadpoles m?2. 2. We experimentally excluded tadpoles from single‐species leaf packs incubated over a 40‐day period in streams with and without frogs. We predicted that decomposition rates would be higher in control (allowing access of tadpoles) treatments in the study stream with frogs than in the frogless stream and, in the stream with frogs, in the control than in the tadpole exclusion treatment. 3. In the stream with frogs, Centrolene prosoblepon and Cochranella albomaculata tadpoles were patchily distributed in leaf packs (0.0–33.3 m?2). In contrast to our predictions, leaf mass loss and temperature‐corrected leaf decomposition rates in control treatments were almost identical in our stream with frogs (41.01% AFDM lost, kdegree day = ?0.028 day?1) and in the frogless stream (41.81% AFDM lost, kdegree day = ?0.027 day?1) and between control and tadpole exclusion treatments within each stream. Similarly, there were no significant differences in leaf pack bacterial biomass, microbial respiration rates or macroinvertebrate abundance between treatments or streams. Invertebrate assemblages on leaf packs were similar between treatments (SIMI = 0.97) and streams (SIMI = 0.95) and were dominated by larval Chironomidae, Simuliidae (Diptera) and larval Anchytarsus spp. (Coleoptera). 4. In contrast to dramatic effects of grazing tadpoles on algal communities observed previously, tadpoles had no major effects on decomposition. While centrolenid tadpoles were common in the stream with frogs, their patchy distribution in both experimental and natural leaf packs suggests that their effects on detrital dynamics and microbes are probably more localised than those of grazing tadpoles on algae.  相似文献   

4.
In tropical ecosystems, the influence of fire can have dramatic effects on the arthropod community and some taxa may take a long period to recover after such disturbance. Here we investigated the effects of an accidental fire on the reestablishment of litter arthropods and compared it with a control/unburned area. Seasonal data were also included in the analysis, as the rupestrian fields (transition between Brazilian savanna and Atlantic forest) have two well-defined seasons and arthropod populations tend to fluctuate accordingly. Our study commenced 4 months after fire and during the 2 years afterwards, we found 19 arthropod groups in the litter, of which flies, springtails, spiders, beetles, true-bugs, harvestmen, grasshoppers, hymenopterans (except ants), mites and roaches were the most representative. The unburned area hosted over 60 % of the total arthropod abundance and only true-bugs were significantly more abundant in the burned site, the other arthropods remained, in general, more abundant in the control/unburned area throughout the study. Arthropod abundance was threefold-higher in the rainy season. Arthropods were able to recolonise the burned area soon after the fire event, but their abundance was low during the 2 years of study, revealing that fire effects can extend for long periods. We conclude that, despite rapid plant resprouting and arthropod colonisation after fire, 2 years were not enough for the full reestablishment of litter arthropods.  相似文献   

5.
1. Landscape genetic approaches were used to assess functional connectivity of populations of the endangered damselfly Coenagrion mercuriale in a fragmented agricultural landscape in Switzerland. Spatial genetic clustering methods combined with interpolation by kriging and landscape genetic corridor analysis were applied to identify landscape elements that enhance or hinder dispersal and gene flow. 2. Spatial genetic clustering analysis divided the sampled populations into a northern and a southern genetic group. The boundary between the two groups coincided with a hill ridge intersecting the study area. Landscape corridor analysis identified five landscape elements that significantly affected gene flow. Elevation change, Euclidian distance, patches of forest and flowing waterbodies acted as barriers, whereas open agricultural land enhanced gene flow between populations of C. mercuriale. 3. This study showed that movement of C. mercuriale was not restricted to its preferred habitat (i.e. streams). Populations linked via continuous open agricultural land were functionally well connected if they were not more than about 1.5–2 km apart. In contrast, substantial elevation change and larger forest patches separated populations. These findings may serve as a basis to define conservation units and should be considered when planning connectivity measures, such as determining the locations of stepping stones, or the restoration of streams.  相似文献   

6.
  • Foliar uptake of dew is likely an important mechanism of water acquisition for plants from tropical dry environments. However, there is still limited experimental evidence describing the anatomical pathways involved in this process and the effects of this water subsidy on the maintenance of gas exchange and leaf lifespan of species from seasonally dry tropical vegetation such as the Brazilian caatinga.
  • We performed scanning electron, bright‐field and confocal microscopic analyses and used apoplastic tracers to examine the foliar water uptake (FWU) routes in four woody species with different foliar phenology and widely distributed in the caatinga. Leaves of plants subjected to water stress were exposed to dew simulation to evaluate the effects of the FWU on leaf water potentials, gas exchange and leaf lifespan.
  • All species absorbed water through their leaf cuticles and/or peltate trichomes but FWU capacity differed among species. Leaf wetting by dew increased leaf lifespan duration up to 36 days compared to plants in the drought treatment. A positive effect on leaf gas exchange and new leaf production was only observed in the anisohydric and evergreen species.
  • We showed that leaf wetting by dew is relevant for the physiology and leaf lifespan of plants from seasonally dry tropical vegetation, especially for evergreen species.
  相似文献   

7.
A compromise between carbon assimilation and structure investment at the leaf level is broadly accepted, yet the relationship between net assimilation per area (An) and leaf mass per area has been elusive. We propose bulk modulus of elasticity (ε) as a suitable parameter to reflect both leaf structure and function, and an inverse relationship between ε and An and mesophyll conductance (gm) is postulated. Using data for An, gm and ε from previous studies and new measurements on a set of 20 species covering all major growth forms, a negative relationship between An or gm and ε was observed. High ε was also related to low leaf capacitance and higher diffusive limitations to photosynthesis. In conclusion, ε emerges as a key trait linked with photosynthetic capacity across vascular plants, and its relationship with gm suggests the existence of a common mechanistic basis, probably involving a key role of cell walls.  相似文献   

8.
Abstract. Research into interspecific variation in functional traits is important for our understanding of trade‐offs in plant design and function, for plant functional type classifications and for understanding ecosystem responses to shifts in species composition. Interspecific rankings of functional traits are a function of, among other factors, ontogenetic or allometric development and environmental effects on phenotypes. For woody plants, which attain large size and long lives, these factors might have strong effects on interspecific trait rankings. This paper is the first to test and compare the correspondence of interspecific rankings between laboratory grown seedlings and field grown adult plants for a wide range of functional leaf and stem traits. It employs data for 90 diverse woody and semiwoody species in a temperate British and a (sub)Mediterranean Spanish flora, all collected according to a strict protocol. For 12 out of 14 leaf and stem traits we found significant correlations between the species ranking in laboratory seedlings and field adults. For leaf size and maximum stem vessel diameter > 50 % of variation in field adults was explained by that in laboratory seedlings. Two important determinants of plant and ecosystem functioning, specific leaf area and leaf N content, had only 27 to 36 and 17 to 31 % of variation, respectively, in field adults explained by laboratory seedlings, owing to subsets of species with particular ecologies deviating from the general trend. In contrast, interspecific rankings for the same traits were strongly correlated between populations of field adults on different geological substrata. Extrapolation of interspecific trait rankings from laboratory seedlings to adult plants in the field, or vice versa, should be done with great caution.  相似文献   

9.
Aphid predators are a systematically disparate group of arthropods united on the basis that they consume aphids as part of their diet. In Europe, this group includes Araneae, Opiliones, Heteroptera, chrysopids, Forficulina, syrphid larvae, carabids, staphylinids, cantharids and coccinellids. This functional group has no phylogenetic meaning but was created by ecologists as a way of understanding predation, particularly for conservation biological control. We investigated whether trait-based approaches could bring some cohesion and structure to this predator group. A taxonomic hierarchy-based null model was created from taxonomic distances in which a simple multiplicative relationship described the Linnaean hierarchies (species, genera, etc.) of fifty common aphid predators. Using the same fifty species, a functional groups model was developed using ten behavioural traits (e.g. polyphagy, dispersal, activity, etc.) to describe the way in which aphids were predated in the field. The interrelationships between species were then expressed as dissimilarities within each model and separately analysed using PROXSCAL, a multidimensional scaling (MDS) program. When ordinated using PROXSCAL and then statistically compared using Procrustes analysis, we found that only 17% of information was shared between the two configurations. Polyphagy across kingdoms (i.e. predatory behaviour across animal, plant and fungi kingdoms) and the ability to withstand starvation over days, weeks and months were particularly divisive within the functional groups model. Confirmatory MDS indicated poor prediction of aphid predation rates by the configurations derived from either model. The counterintuitive conclusion was that the inclusion of functional traits, pertinent to the way in which predators fed on aphids, did not lead to a large improvement in the prediction of predation rate when compared to the standard taxonomic approach.  相似文献   

10.
Primates worldwide are faced with increasing threats making them more vulnerable to extinction. Anthropogenic disturbances, such as habitat degradation and fragmentation, are among the main concerns, and in Madagascar, these issues have become widespread. As this situation continues to worsen, we sought to understand how fragmentation affects primate distribution throughout the island. Further, because species may exhibit different sensitivity to fragmentation, we also aimed to estimate the role of functional traits in mitigating their response. We collated data from 32 large-bodied lemur species ranges, consisting of species from the families Lemuridae (five genera) and Indriidae (two genera). We fitted Generalized Linear Models to determine the role of habitat fragmentation characteristics, for example, forest cover, patch size, edge density, and landscape configuration, as well as the protected area (PA) network, on the species relative probability of presence. We then assessed how the influence of functional traits (dietary guild, home range size) mitigate the response of species to these habitat metrics. Habitat area had a strong positive effect for many species, and there were significantly negative effects of fragmentation on the distribution of many lemur species. In addition, there was a positive influence of PAs on many lemur species’ distribution. Functional trait classifications showed that lemurs of all dietary guilds are negatively affected by fragmentation; however, folivore-frugivores show greater flexibility/variability in terms of habitat area and landscape complexity compared to nearly exclusive folivores and frugivores. Furthermore, species of all home range sizes showed a negative response to fragmentation, while habitat area had an increasingly positive effect as home range increased in size. Overall, the general trends for the majority of lemur species are dire and point to the need for immediate actions on a multitude of fronts, most importantly landscape-level reforestation efforts.  相似文献   

11.
The decomposition rates of plant litter mixtures often deviate from the averaged rates of monocultures of their component litter species. The mechanisms behind these non‐additive effects in decomposition of litter mixtures are lively debated. One plausible explanation for non‐additive effects is given by the improved microenvironmental condition (IMC) theory. According to this theory, plant litter species, whose physical characteristics improve the microclimatic conditions for decomposers, will promote the decomposition of their co‐occurring litter species. We tested the IMC theory in relation to leaf litter and soil moisture in two contrasting moisture conditions in a dry subarctic mountain birch forest with vascular plant leaf litters of poor and high quality. The non‐additive effects in mass loss of litter mixtures increased when moisture conditions in litter and soil became more favourable for plant litter decomposition. The sign of this increase (antagonistic or synergistic) in non‐additive effects was more predictable for litter mixtures of poor litter quality. Although the specific mechanisms underlying the IMC theory depended on the litter quality of the litter mixtures, a standardized water holding capacity (WHC) was the litter trait most closely related to the non‐additive effects in mixtures of both poor and high quality litter types. Furthermore, we found that higher dissimilarity in WHC traits between the component litter species in a mixture increased synergistic effects in litter mixtures under limiting moisture conditions. However, under improved moisture conditions, increased antagonistic effects were observed. Thus, we found clear support for the IMC theory and showed that climatic conditions and leaf litter physical traits determine whether the non‐additive effects in litter mixtures are antagonistic or synergistic. Our study emphasizes the need to include litter physical traits into predictive models of mixing effects on plant litter decomposition and in general suggests climate specificity into these models.  相似文献   

12.
Male–male competition is strongly affected by female presence. In insects with primitive features such as megalopterans, however, it is not known how aggressiveness is expressed in the context of female presence. Here we examined the effect of social environments on the use of secondary sexual traits in the sexual behavior of the Mexican dobsonfly Corydalus bidenticulatus (Megaloptera: Corydalidae). Males of this species have exaggerated traits such as disproportionally elongated mandibles with no dentition, which is a secondary sexual trait used in competition over female access as well as males of other Corydalus species. We investigated how male–male interactions are carried out, and the scaling relationships of sexual and non‐sexual traits. Our results show that males of C. bidenticulatus are not indiscriminately aggressive. The decision whether to fight or not is affected by their social environments: males are aggressive against other males only when the presence of a female is detected. Results also suggest that mandibles and antennae are sexually dimorphic, being exaggerated and showing positive allometry only in males. In contrast, male genitalia, a sex‐specific trait, show negative allometry.  相似文献   

13.
Savanna ecosystems have long been fertile ground for mathematical modeling of vegetation structure and the role of resources and disturbance in tree-grass coexistence. In recent years, several authors have presented models that explore how savanna fires suppress the woody community, alter ecosystem dynamics, and promote grass persistence. We argue, however, that the assumption that fires influence savanna dynamics by consuming woody biomass may be wrong because, in reality, fires kill seedlings and saplings that constitute little biomass relative to adult trees. We present a simple alternative that separates the woody community into a subadult (fire-sensitive) class and an adult (fire-resistant) class and explore how this ecologically more realistic, but still simplified, model may provide better simulations of demographic processes and response to fires in savannas.  相似文献   

14.
Abstract. Plant defense theories suggest that chemical or structural defences should be maximized when and where browsing is most likely to occur. We tested this hypothesis on four evergreen woody species growing in a Mediterranean area with a high density of ungulates. In this system, levels of browsing are more intense in the winter (due to the lack of annual plants) and young foliage is often preferred. Therefore we predicted that the chemical defences of these species, namely their phenolic content, would vary with leaf age, season and damage intensity. In addition, we tested whether ungulates preferentially selected species containing lower phenolic levels, and also whether browsing induced either chemical or morphological changes in damaged plants. Phenolic levels varied greatly between plant species; ungulates browsed preferentially on the species with the lowest phenolic levels. No difference in phenolic content was found between browsed and unbrowsed trees. Morphological changes in heavily browsed trees included an increase in shoot and leaf density and a net decrease in leaf size. We suggest that for Mediterranean plants, which have evolved under high browsing pressure from large mammals, the production of small leaves and dense shoots in response to browsing might decrease ungulate foraging efficiency and hence reduce the rate of further damage as effectively as high levels of chemical defence.  相似文献   

15.
The phenology of tree species in environments that are subject to strong climatic seasonality is mainly determined by water availability, which may vary as a function of wood density. The relationship among phenology, water potential, wood density and the capacity of water storage in the stem were determined for woody species of caatinga vegetation (dry forest) in the semiarid region of NE Brazil. Leaf flush and fall, flowering and fruiting events were recorded over a 31-month period, and the water potential was measured over a two-year period. These data were related to precipitation, water availability in the soil and photoperiod. Seven deciduous species exhibited low wood density (DLWD,?<0.5?g?cm?3), high capacity of water storage in the stem (until 250?% of the dry weight) and high water potential during the year, as opposed to 15 deciduous species that showed high wood density (DHWD,?≥0.5?g?cm?3). Leaf flush, flowering and the fruiting of DHWD species were related to precipitation, whereas these phenological events occurred at the end of the dry season and/or the beginning of the rainy season for DLWD species and were related to the photoperiod. The two evergreen species showed variations of water potential that were intermediate between those of DHWD and DLWD deciduous species, leaf flush during the dry season and flowering at the end of dry season. These results suggest the existence of three functional groups: evergreen species, DHWD deciduous species and DLWD deciduous species.  相似文献   

16.
17.
Slow-growing juveniles of shade-tolerant plant species are predicted to have tough leaves because of the high cost of leaf replacement in shade relative to potential carbon gain. We assessed the degree of correlated evolution among eight traits associated with leaf toughness and the relationships of those traits with the growth and mortality rates of 197 tree and shrub species from the understory of the 50-ha forest dynamics plot on Barro Colorado Island, Panama. Path analysis with phylogenetically independent contrasts revealed that leaves attained material toughness (resistance to fracture per unit fracture area) through increases in tissue density, percent cellulose per unit dry mass, and vein fracture toughness. Lamina density and cellulose content evolved independently and thus represent different paths to material toughness. Structural toughness (resistance to fracture per unit fracture length) depended on material toughness and lamina thickness. Mortality rates of individuals 1-10 cm in stem diameter were negatively correlated with material toughness and lamina density but were independent of structural toughness and cell wall fiber contents. Leaf toughness traits were uncorrelated with relative growth rates. Results imply that material toughness enhances resistance to natural enemies, which increases survival and offsets the biomass allocation cost of producing tough leaves in the shaded understory.  相似文献   

18.
Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i   总被引:8,自引:0,他引:8  
Allison SD  Vitousek PM 《Oecologia》2004,141(4):612-619
Physiological traits that contribute to the establishment and spread of invasive plant species could also have impacts on ecosystem processes. The traits prevalent in many invasive plants, such as high specific leaf areas, rapid growth rates, and elevated leaf nutrient concentrations, improve litter quality and should increase rates of decomposition and nutrient cycling. To test for these ecosystem impacts, we measured initial leaf litter properties, decomposition rates, and nutrient dynamics in 11 understory plants from the Hawaiian islands in control and nitrogen + phosphorus fertilized plots. These included five common native species, four of which were ferns, and six aggressive invasive species, including five angiosperms and one fern. We found a 50-fold variation in leaf litter decay rates, with natives decaying at rates of 0.2–2.3 year–1 and invaders at 1.4–9.3 year–1. This difference was driven by very low decomposition rates in native fern litter. Fertilization significantly increased the decay rates of leaf litter from two native and two invasive species. Most invasive litter types lost nitrogen and phosphorus more rapidly and in larger quantities than comparable native litter types. All litter types except three native ferns lost nitrogen after 100 days of decomposition, and all litter types except the most recalcitrant native ferns lost >50% of initial phosphorus by the end of the experiment (204–735 days). If invasive understory plants displace native species, nutrient cycling rates could increase dramatically due to rapid decomposition and nutrient release from invasive litter. Such changes are likely to cause a positive feedback to invasion in Hawaii because many invasive plants thrive on nutrient-rich soils.  相似文献   

19.
The question of why variation is maintained in personality traits is an evolutionary puzzle. According to the condition‐dependence hypothesis, such traits depend on condition, which limits the behavioral choices available to individuals. Because condition is affected by many genes, it can effectively be manipulated by inbreeding, which exposes the effects of deleterious recessive mutations. Here, I compared two personality traits, boldness and tendency to explore, of male guppies (Poecilia reticulata) from first‐generation inbred and outbred treatments. Boldness in guppies is associated with increased sexual attractiveness and is thus expected to affect fitness. Therefore, I hypothesized that the personality traits would be negatively affected by inbreeding. However, the results indicated that inbred guppies did not differ in either personality trait from their outbred counterparts. This finding suggests that mechanisms other than condition dependence are maintaining personality variation in the guppy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号