首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
Notch signaling is involved in several cell lineage determination processes during embryonic development. Recently, we have shown that Sox9 is most likely a primary target gene of Notch1 signaling in embryonic stem cells (ESCs). By using our in vitro differentiation protocol for chondrogenesis from ESCs through embryoid bodies (EBs) together with our tamoxifen-inducible system to activate Notch1, we analyzed the function of Notch signaling and its induction of Sox9 during EB differentiation towards the chondrogenic lineage. Temporary activation of Notch1 during early stages of EB, when lineage determination occurs, was accompanied by rapid and transient Sox9 upregulation and resulted in induction of chondrogenic differentiation during later stages of EB cultivation. Using siRNA targeting Sox9, we knocked down and adjusted this early Notch1-induced Sox9 expression peak to non-induced levels, which led to reversion of Notch1-induced chondrogenic differentiation. In contrast, continuous Notch1 activation during EB cultivation resulted in complete inhibition of chondrogenic differentiation. Furthermore, a reduction and delay of cardiac differentiation observed in EBs after early Notch1 activation was not reversed by siRNA-mediated Sox9 knockdown. Our data indicate that Notch1 signaling has an important role during early stages of chondrogenic lineage determination by regulation of Sox9 expression.  相似文献   

5.
6.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.  相似文献   

7.
Insulin treatment of mouse ATDC5 chondroprogenitors induces these cells to differentiate into mature chondrocytes. To identify novel factors that are involved in this process, we carried out mutagenesis of ATDC5 cells through retroviral insertion and isolated two mutant clones incapable of differentiation. Inverse PCR analysis of these clones revealed that the retroviral DNA was inserted into the promoter region of the Rab23 gene, resulting in increased Rab23 expression. To investigate whether an elevated level of Rab23 protein led to inhibition of chondrogenic differentiation, we characterized ATDC5 cells that either overexpress endogenous Rab23 or stably express ectopic Rab23. Our results revealed that up-regulation of Rab23 can indeed inhibit chondrogenic differentiation with a concomitant down-regulation of matrix genes such as type II collagen and aggrecan. In addition, stable small interfering RNA knockdown of Rab23 also resulted in inhibition of chondrogenic differentiation as well as down-regulation of Sox9, a master regulator of chondrogenesis. Interestingly, Sox9 expression has recently been linked to Gli1, and we found that Rab23 knockdown decreased Gli1 expression in chondrocytes. Because the phenotypes of Rab23 mutations in mice and humans include defects in cartilage and bone development, our study suggests that Rab23 is involved in the control of Sox9 expression via Gli1 protein.  相似文献   

8.
9.
10.
We find that during embryogenesis the expression of HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, is progressively down-regulated throughout the entire embryo, except in committed but continuously renewing cell types, such as the basal layer of the epithelium. In the developing limb bud, the expression of HMGN1 is complementary to Sox9, a master regulator of the chondrocyte lineage. In limb bud micromass cultures, which faithfully mimic in vivo chondrogenic differentiation, loss of HMGN1 accelerates differentiation. Expression of wild-type HMGN1, but not of a mutant HMGN1 that does not bind to chromatin, in Hmgn1-/- micromass cultures inhibits Sox9 expression and retards differentiation. Chromatin immunoprecipitation analysis reveals that HMGN1 binds to Sox9 chromatin in cells that are poised to express Sox9. Loss of HMGN1 elevates the amount of HMGN2 bound to Sox9, suggesting functional redundancy among these proteins. These findings suggest a role for HMGN1 in chromatin remodeling during embryogenesis and in the activation of Sox9 during chondrogenesis.  相似文献   

11.
12.
Cranial suture development involves a complex interaction of genes and tissues derived from neural crest cells (NCC) and paraxial mesoderm. In mice, the posterior frontal (PF) suture closes during the first month of life while other sutures remain patent throughout the life of the animal. Given the unique NCC origin of PF suture complex (analogous to metopic suture in humans), we performed quantitative real-time PCR and immunohistochemistry to study the expression pattern of the NCC determinant gene Sox9 and select markers of extracellular matrix. Our results indicated a unique up-regulated expression of Sox9, a regulator of chondrogenesis, during initiation of PF suture closure, along with the expression of specific cartilage markers (Type II Collagen and Type X Collagen), as well as cartilage tissue formation in the PF suture. This process was followed by expression of bone markers (Type I Collagen and Osteocalcin), suggesting endochondral ossification. Moreover, we studied the effect of haploinsufficiency of the NCC determinant gene Sox9 in the NCC derived PF suture complex. A decrease in dosage of Sox9 by haploinsufficiency in NCC-derived tissues resulted in delayed PF suture closure. These results demonstrate a unique development of the PF suture complex and the role of Sox9 as an important contributor to timely and proper closure of the PF suture through endochondral ossification.  相似文献   

13.
14.
15.
The aim of this study was to identify new microRNAs (miRNAs) that are modulated during the differentiation of mesenchymal stem cells (MSCs) toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0) and at early time points (day 0.5 and 3) after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXR)α is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号