首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.  相似文献   

2.
Structural insights into ABC transporter mechanism   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.  相似文献   

3.
Understanding the structure and function of the ATP-binding cassette (ABC) transporters is very important because defects in ABC transporters lie at the root of several serious diseases including cystic fibrosis. MalK, the ATP-binding cassette of the maltose transporter of Escherichia coli, is distinct from most other ATP-binding cassettes in that it contains an additional C-terminal regulatory domain. The published structure of a MalK dimer is elongated with C-terminal domains at opposite poles (Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000) EMBO J. 19, 5951-5961). Some uncertainty exists as to whether the orientation of MalK in the dimer structure is correct. Superpositioning of the N-terminal domains of MalK onto the ATP-binding domains of an alternate ABC dimer, in which ATP is bound along the dimer interface between Walker A and LSGGQ motifs, places both N- and C-terminal domains of MalK along the dimer interface. Consistent with this model, a cysteine substitution at position 313 in the C-terminal domain of an otherwise cysteine-free MalK triggered disulfide bond formation between two MalK subunits in an intact maltose transporter. Disulfide bond formation did not inhibit the function of the transporter, suggesting that the C-terminal domains of MalK remain in close proximity throughout the transport cycle. Enzyme IIAglc still inhibited the ATPase activity of the disulfide-linked transporter indicating that the mechanism of inducer exclusion was unaffected. These data support a model for ATP hydrolysis in which the C-terminal domains of MalK remain in contact whereas the N-terminal domains of MalK open and close to allow nucleotide binding and dissociation.  相似文献   

4.
ABC transporters: how small machines do a big job   总被引:7,自引:0,他引:7  
Transporters from the ATP-binding cassette (ABC) superfamily operate in all organisms, from bacteria to humans, to pump substances across biological membranes. Recent high-resolution views of ABC transporters in different conformational states provide clues as to how ATP might be used to drive the structural reorganizations that accompany membrane transport. Importantly, it now appears that a putative translocation pathway running through the center of the transporter might be gated alternately, either at the inside or the outside of the cytoplasmic membrane, coupling substrate translocation to a cycle of ATP-dependent conformational changes. ATP binding and ATP hydrolysis have distinct roles in this cycle: binding favors the outward-facing orientation, whereas hydrolysis returns the transporter to an inward-facing conformation.  相似文献   

5.
Hinz A  Tampé R 《Biochemistry》2012,51(25):4981-4989
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.  相似文献   

6.
ABC transporters are a superfamily of enzyme pumps that hydrolyse ATP in exchange for translocation of substrates across cellular membranes. Architecturally, ABC transporters are a dimer of transmembrane domains coupled to a dimer of nucleotide binding domains (NBDs): the NBD dimer contains two ATP-binding sites at the intersubunit interface. A current controversy is whether the protomers of the NBD dimer separate during ATP hydrolysis cycling, or remain in constant contact. In order to investigate the ABC ATPase catalytic mechanism, MD simulations using the recent structure of the ADP+Pi-bound MJ0796 isolated NBD dimer were performed. In three independent simulations of the ADP+Pi/apo state, comprising a total of >0.5 µs, significant opening of the apo (empty) active site was observed; occurring by way of intrasubunit rotations between the core and helical subdomains within both NBD monomers. In contrast, in three equivalent simulations of the ATP/apo state, the NBD dimer remained close to the crystal structure, and no opening of either active site occurred. The results thus showed allosteric coupling between the active sites, mediated by intrasubunit conformational changes. Opening of the apo site is exquisitely tuned to the nature of the ligand, and thus to the stage of the reaction cycle, in the opposite site. In addition to this, in also showing how one active site can open, sufficient to bind nucleotide, while the opposite site remains occluded and bound to the hydrolysis products ADP+Pi, the results are consistent with a Constant Contact Model. Conversely, they show how there may be no requirement for the NBD protomers to separate to complete the catalytic cycle.  相似文献   

7.
ATP-binding cassette (ABC) transporters encompass membrane transport proteins that couple the energy derived from ATP hydrolysis to the translocation of solutes across biological membranes. The functions of these proteins include ancient and conserved mechanisms related to nutrition and pathogenesis in bacteria, spore formation in fungi, and signal transduction, protein secretion and antigen presentation in eukaryotes. Furthermore, one of the major causes of drug resistance and chemotherapeutic failure in both cancer and anti-infective therapies is the active movement of compounds across membranes carried out by ABC transporters. Thus, the clinical relevance of ABC transporters is enormous, and the membrane transporters related to chemoresistance are among the best-studied members of the ABC transporter superfamily. As ABC transporter blockers can be used in combination with current drugs to increase their efficacy, the (possible) impact of efflux pump inhibitors is of great clinical interest. The present review summarizes the progress made in recent years in the identification, design, availability, and applicability of ABC transporter blockers in experimental scenarios oriented towards improving the treatment of infectious diseases caused by microorganisms including parasites.  相似文献   

8.
The ABC maltose transporter   总被引:6,自引:0,他引:6  
Bacterial ATP-binding cassette (ABC) transporters and their homologues in eukaryotic cells form one of the largest superfamilies known today. They function as primary pumps that couple substrate translocation across the cytoplasmic membrane to ATP hydrolysis. Although ABC transporters have been studied for more than three decades, the structure of these multicomponent systems is unknown, and the mechanism of transport is not understood. This article reviews one of the most widely studied ABC systems, the maltose transporter of Escherichia coli . A first structural model of the transport channel allows discussion of possible mechanisms of transport. In addition, recent experimental evidence suggests that regulation of gene expression and transport activity is far more complex than expected.  相似文献   

9.
Structure,Function, and Evolution of Bacterial ATP-Binding Cassette Systems   总被引:1,自引:0,他引:1  
Summary: ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.  相似文献   

10.
ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins that includes both importers and exporters. In recent years, several structures of complete ABC transporters have been determined by X-ray crystallography. These structures suggest a mechanism by which binding and hydrolysis of ATP by the cytoplasmic, nucleotide-binding domains control the conformation of the transmembrane domains and therefore which side of the membrane the translocation pathway is exposed to. A basic, conserved two-state mechanism can explain active transport of both ABC importers and ABC exporters, but various questions remain unresolved. In this article, I will review some of the crystal structures and the mechanistic insight gained from them. Future challenges for a better understanding of the mechanism of ABC transporters will be outlined.  相似文献   

11.
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis.  相似文献   

12.
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.  相似文献   

13.
Structure and mechanism of ABC transporters   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substrates across cell or organelle membranes. The recently determined crystal structures of the vitamin B(12) importer BtuCD and its cognate binding protein BtuF have revealed critical architectural features that are probably shared by other ABC transporters. For example, the arrangement of the ABC domains and their interface with the membrane-spanning domains are probably conserved, whereas the number of transmembrane helices and their arrangement are not. Two distinct mechanistic schemes for how ABC engines couple ATP hydrolysis to substrate transport have been proposed recently and are being explored.  相似文献   

14.
ATP-binding cassette transporters use the free energy of ATP hydrolysis to transport structurally diverse molecules across prokaryotic and eukaryotic membranes. Computer simulation studies of the "real-time" dynamics of the ATP binding process in BtuCD, the vitamin B12 importer from Escherichia coli, demonstrate that the docking of ATP to the catalytic pockets progressively draws the two cytoplasmic nucleotide-binding cassettes toward each other. Movement of the cassettes into closer opposition in turn induces conformational rearrangement of alpha-helices in the transmembrane domain. The shape of the translocation pathway consequently changes in a manner that could aid the vectorial movement of vitamin B12. These results suggest that ATP binding may indeed represent the power stroke in the catalytic mechanism. Moreover, occlusion of ATP at one catalytic site is mechanically coupled to opening of the nucleotide-binding pocket at the second site. We propose that this asymmetry in nucleotide binding behavior at the two catalytic pockets may form the structural basis by which the transporter is able to alternate ATP hydrolysis from one site to the other.  相似文献   

15.
Until recently, extracytoplasmic solute receptor (ESR)-dependent uptake systems were invariably found to possess a conserved ATP-binding protein (the ATP-binding cassette protein or ABC protein), which couples ATP hydrolysis to the translocation of the solute across the cytoplasmic membrane. While it is clear that this class of ABC transporter is ubiquitous in prokaryotes, it is now firmly established that other, unrelated types of membrane transport systems exist which also have ESR components. These systems have been designated tripartite ATP-independent periplasmic (TRAP) transporters, and they form a distinct class of ESR-dependent secondary transporters where the driving force for solute accumulation is an electrochemical ion gradient and not ATP hydrolysis. Currently, the most well characterised TRAP transporter at the functional and molecular level is the high-affinity C4-dicarboxylate transport (Dct) system from Rhodobacter capsulatus. This consists of three proteins; an ESR (DctP) and small (DctQ) and large (DctM) integral membrane proteins. The characteristics of this system are discussed in detail. Homologues of the R. capsulatus DctPQM proteins are present in a diverse range of prokaryotes, both bacteria and archaea, but not in eukaryotes. The deduced structures and possible functions of these homologous systems are described. In addition to the DctP family, other types of ESRs can be associated with TRAP transporters. A conserved family of immunogenic extracytoplasmic proteins is shown to be invariably associated with TRAP systems that contain a large DctQM fusion protein. All of the currently known archaeal systems are of this type. It is concluded that TRAP transporters are a widespread and ancient type of solute uptake system that transport a potentially diverse range of solutes and most likely evolved by the addition of auxiliary proteins to a single secondary transporter.  相似文献   

16.
Reyes CL  Ward A  Yu J  Chang G 《FEBS letters》2006,580(4):1042-1048
ATP-binding cassette (ABC) transporters are integral membrane proteins that couple ATP hydrolysis to the transport of various molecules across cellular membranes. Found in both prokaryotes and eukaryotes, a sub-group of these transporters are involved in the efflux of hydrophobic drugs and lipids, causing anti-microbial and chemotherapeutic multidrug resistance. In this review, we examine recent structural and functional analysis of the ABC transporter MsbA and implications on the mechanism of multidrug efflux.  相似文献   

17.
Konings WN  Poelarends GJ 《IUBMB life》2002,53(4-5):213-218
Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural and functional characteristics, this bacterial protein is classified as a member of the P-glycoprotein cluster of the ABC transporter superfamily. LmrA can even substitute for P-glycoprotein in human lung fibroblast cells, suggesting that this type of transporter is conserved from bacteria to man. The functional similarity between bacterial LmrA and human P-glycoprotein is further exemplified by their currently known spectrum of substrates, consisting mainly of hydrophobic cationic compounds. In addition, LmrA was found to confer resistance to eight classes of broad-spectrum antibiotics, and homologs of LmrA have been found in pathogenic bacteria, supporting the clinical and academic value of studying this bacterial protein. Current studies are focused on unraveling the mechanism by which ABC multidrug transporters, such as LmrA, couple the hydrolysis of ATP to the translocation of drugs across the membrane. Recent evidence indicates that LmrA mediates drug transport by an alternating two-site transport mechanism.  相似文献   

18.
ATP-binding cassette (ABC) transporters are integral membrane proteins that move diverse substrates across cellular membranes. ABC importers catalyse the uptake of essential nutrients from the environment, whereas ABC exporters facilitate the extrusion of various compounds, including drugs and antibiotics, from the cytoplasm. How ABC transporters couple ATP hydrolysis to the transport reaction has long remained unclear. The recent crystal structures of four complete ABC transporters suggest that a key step of the molecular mechanism is conserved in importers and exporters. Whereas binding of ATP promotes an outward-facing conformation, the release of the hydrolysis products ADP and phosphate promotes an inward-facing conformation. This basic scheme can in principle explain ATP-driven drug export and binding protein-dependent nutrient uptake.  相似文献   

19.
Structure and mechanism of ABC transporter proteins   总被引:7,自引:1,他引:6  
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that couple the transport of diverse substrates across cellular membranes to the hydrolysis of ATP. The crystal structures of four ABC transporters have recently been determined. They reveal similar arrangements of the conserved ATP-hydrolyzing nucleotide-binding domains, but unrelated architectures of the transmembrane domains, with the notable exception of a common 'coupling helix' that is essential for transmitting conformational changes. The structures suggest a mechanism that rationalizes ATP-driven transport: While binding of ATP appears to trigger an outward-facing conformation, dissociation of the hydrolysis products may promote an inward-facing conformation. This basic scheme can, in principle, explain nutrient import by ABC importers and drug extrusion by ABC exporters.  相似文献   

20.
One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号