共查询到20条相似文献,搜索用时 0 毫秒
1.
? Premise of the study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. ? Methods: We used recently developed spline climatic models and modified Random Forests statistical procedures to predict suitable habitats of three rare, endangered spruces of Mexico and a spruce of the southwestern USA. We used three general circulation models and two sets of carbon emission scenarios (optimistic and pessimistic) for future climates. ? Key results: Our procedures predicted present occurrence perfectly. For the decades 2030, 2060, and 2090, the ranges of all taxa progressively decreased, to the point of transient disappearance for one species in the decade 2060 but reappearance in 2090. Contrary to intuition, habitat did not develop to the north for any of the Mexican taxa; rather, climate niches for two taxa re-materialized several hundred kilometers southward in the Trans-Mexican Volcanic Belt. The climate niche for a third Mexican taxon shrank drastically, and its two mitotypes responded differently, one of the first demonstrations of the importance of intraspecific genetic variation in climate niches. The climate niche of the U.S. species shrank northward and upward in elevation. ? Conclusion: The results are important for conservation of these species and are of general significance for conservation by assisted colonization. We conclude that our procedures for producing models and projecting the climate niches of Mexican spruces provide a way for handling other rare plants, which constitute the great bulk of the world's endangered and most vulnerable flora. 相似文献
2.
Estimated migration rates under scenarios of global climate change 总被引:11,自引:0,他引:11
Jay R. Malcolm Adam Markham Ronald P. Neilson & Michael Garaci 《Journal of Biogeography》2002,29(7):835-849
3.
4.
5.
Controls on soil respiration: Implications for climate change 总被引:42,自引:1,他引:42
6.
B. R. Broitman P. L. Szathmary K. A. S. Mislan C. A. Blanchette B. Helmuth 《Oikos》2009,118(2):219-224
Habitat temperature is often assumed to serve as an effective proxy for organism body temperature when making predictions of species distributions under future climate change. However, the determinants of body temperature are complex, and organisms in identical microhabitats can occupy radically different thermal niches. This can have major implications of our understanding of how thermal stress modulates predator–prey relationships under field conditions. Using body temperature data from four different sites on Santa Cruz Island, California, we show that at two sites the body temperatures of a keystone predator (the seastar Pisaster ochraceus ) and its prey (the mussel Mytilus californianus ) followed very different trajectories, even though both animals occupied identical microhabitats. At the other two sites, body temperatures of predator and prey were closely coupled across a range of scales. The dynamical differences between predator and prey body temperatures depended on the location of pairs of sites, at the extremes of a persistent landscape-scale weather pattern observed across the island. Thus, the well understood predator–prey interaction between Pisaster and Mytilus cannot be predicted based on habitat-level information alone, as is now commonly attempted with landscape-level ('climate envelope') models. 相似文献
7.
Climate change poses an immediate threat to the persistence and distribution of many species, yet our ability to forecast changes in species composition is hindered by poor understanding of the extent to which higher trophic‐level interactions may buffer or exacerbate the adverse effects of warming. We incorporated species‐specific consumption data from 240 wolf‐killed elk carcasses from Yellowstone National Park into stochastic simulation models to link trends in the El Niño Southern Oscillation (ENSO) to food procurement by a guild of scavengers as a function of gray wolf reintroduction. We find that a shift in ENSO towards the El Niño (warming) phase of the cycle coincident with increasing global temperatures reduces carrion for scavengers, particularly those with strong seasonal patterns in resource use such as grizzly bears. Wolves alleviate these warming‐induced food shortages by rendering control over this crucial resource to biotic rather than abiotic factors. Ecosystems with intact top predators are likely to exhibit stronger biotic regulation and should be more resistant to climate change than ecosystems lacking them. 相似文献
8.
We predicted future plague and black-tailed prairie dog dynamics in the North American prairies under different scenarios of climate change. A climate-driven model for the joint dynamic of the host–parasite system was used. Projections for the regional climate were obtained through empirical–statistical downscaling of global climate scenarios generated by an ensemble of global climate models for the recent Fourth Assessment Report by the IPCC. The study shows the uncertainties involved in predicting future regional climate and climate-driven population dynamics, but reveals that unchanged or lower levels of plague, leading to increased black-tailed prairie dog colonies, can be expected. Less plague is particularly expected for scenarios that assume the highest emission of greenhouse gases associated with the greatest projected future warming. Moreover, under high-emission scenarios, decreased probabilities of extremely high numbers of infected colonies are expected, along with decreased probabilities of extremely low total numbers of colonies. The assumed main underlying mechanism is an inhibiting effect of high temperatures on fleas (dispersal vector) and on flea-mediated transmission of the disease-causing bacterium. Our study highlights the importance of using dynamic ecological (here host–parasite) models together with ensembles of climate projections to investigate the responses of populations and parasites to a changed climate. 相似文献
9.
Octavio R. Rojas-Soto Victoria Sosa Juan Francisco Ornelas 《Biodiversity and Conservation》2012,21(10):2671-2690
Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of cloud forest species were developed to study how climate change could affect the distribution of cloud forest in eastern and southern Mexico for the year 2050. Using ENM-based predictions and climatic data for IPCC climate change A2 and B2 scenarios, we observed 54–76% reduction of the cloud forest, mainly in the northern region of its current range (Sierra Madre Oriental) and the Pacific slope of Chiapas. With predicted 2050 climate change, cloud forest in the Los Tuxtlas region and El Cielo Biosphere Reserve may face a serious threat of extinction due to the observed upward migration to higher elevations. Our results add to recent studies detecting negative impacts of climate change in montane forests, but the negative impacts of climate change might be exacerbated by current environmental changes in the region. The integration of ecological-niche characteristics of cloud forest in conjunction with projections of extreme climate scenarios constitute a suitable tool to define appropriate areas in which proactive conservation and management strategies should be focused. 相似文献
10.
Climate change could profoundly affect the status of agricultural insect pests. Several approaches have been used to predict how the temperature and precipitation changes could modify the abundances, distributions or status of insect pests. In this article it is demonstrated how the use of simple models, such as Ricker’s classic equation, including a mechanistic representation of the influence of exogenous forces may improve our predictive capacity of the dynamic behaviour of insect populations. Using data from classical experiments in population ecology, we evaluate how temperature and humidity influence the density of two stored grain insect pest, Tribolium confusum and Callosobruchus chinensis, and then, using the A2 and B2 scenarios proposed by the Intergovernmental Panel on Climate Change and the previous modelling, we develop predictions over the future pest status of T. confusum along South America austral region, and specifically for eight cities in the continental Chilean territory. Tribolium confusum and C. chinensis show qualitatively different responses to the exogenous forcing of temperature and humidity, respectively. Our simulations predict a change in the equilibrium density of T. confusum from 10 to 14% under the moderate B2 scenario and 12 to 22% under the extreme A2 scenario to the period, 2071–2100. Both results imply a severe change in the pest status of this species in the southern region. This study illustrates how the use of theoretically based models may improve our predictive capacity. This approach provides an opportunity to examine the link between invasive species and climate change and how new suitable habitat may become available for species whose niche space is limited in some degree by climatic conditions. The use of different scenarios allows us to examine the sensitivity of the predictions, and to improve the communication with the general public and decision‐makers; a key aspect in integrated pest management. 相似文献
11.
Franz Essl Stefan Dullinger Dietmar Moser Wolfgang Rabitsch Ingrid Kleinbauer 《Biodiversity and Conservation》2012,21(3):655-669
Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs,
transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely
cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria
and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within
the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine
Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems.
Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly
or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with
rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become
more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types
(bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate
change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat
loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to
enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively
stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution
to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also
maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire
ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios. 相似文献
12.
Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models 总被引:4,自引:0,他引:4
Keith DA Akçakaya HR Thuiller W Midgley GF Pearson RG Phillips SJ Regan HM Araújo MB Rebelo TG 《Biology letters》2008,4(5):560-563
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change. 相似文献
13.
14.
Tropical species are vulnerable to global warming because they live at, or near to, their upper thermal threshold limits. Therefore, the predicted increase in the frequency of warming events in the tropics is expected to be critical for the survival of local species. This study explored the major environmental variables which were thought to be correlated with body temperatures (BTs) of the tropical snail Littoraria scabra at the niche level. A correlation between BT and substrate temperature (ST) was detected from field observations which suggests a possible causal relationship between both substrate and BTs. In contrast, there was no correlation between BT and air temperature. Field observations suggest that 33.4 °C may be L. scabra upper limit of substrate surface temperature, although further experiments are needed to assess if the upper limit of physiological tolerance is actually different. As L. scabra individuals were free to choose their substrata, the observed distribution pattern at the niche level is related to L. scabra's behavior. Additionally, substrate surface temperatures were very heterogeneous at centimeter scale (i.e. from 22.5 to 53.1 °C) and L. scabra was shown to select specific STs (i.e. between 22.5 and 33.4 °C) rather than microhabitat type. Therefore, L. scabra did not seem to behaviorally thermoregulate through microhabitat selection nor aggregation. In contrast, behavioral experiments showed that L. scabra has the ability to actively select a thermally favorable site over short temporal scale (i.e. individual average speed of 1.26 cm min?1) following exposure to high temperatures above 33.4 °C. Hence, this study supports the crucial need to integrate intertidal invertebrate behavioral responses to thermal constraints in climate change studies. 相似文献
15.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. 相似文献
16.
CAMILLE TURLURE JULIE CHOUTT MICHEL BAGUETTE HANS VAN DYCK 《Global Change Biology》2010,16(6):1883-1893
In contrast to several organisms that have already shown range shifts to the north as a response to climate change, southern populations of relict species are trapped in isolated altitudinal habitats. Therefore, there is a growing interest to better understand their habitat use, with particular attention to the thermal aspects and associated significance for their habitat management. We address this issue by a study of larval habitat use relative to vegetation structure and microclimate in a glacial relict butterfly of peat bog ecosystems, using a functional, resource‐based habitat approach. We analysed caterpillar presence and density relative to vegetation composition (reflecting gradients of humidity, temperature, and natural succession of the peat bog) and to the availability and quality of thermal refuges for caterpillars (i.e., structures provided by Sphagnum hummocks). We also tested caterpillar survival rates under different temperature and humidity treatments. We found that (1) Boloria aquilonaris was a specialist butterfly of early successional stages with very humid zones of peat bog, (2) the lack of Sphagnum hummocks reduced larval habitat suitability, and hence the population density, and (3) a reduction of the thermal buffering ability of Sphagnum hummocks was observed in less humid, degraded parts, or late‐successional stages of peat bog. A larval rearing experiment showed a significant impact of temperature on caterpillar survival; survival being higher at lower temperature. Our field and laboratory results support the idea that the thermal environment exploited by caterpillars should be considered as a functional resource and included in a population‐specific habitat definition. Appropriate management of the peat bog habitat of this glacial relict species should not exclusively focus on the larval and adult feeding resources, but also on the quality of thermal refuges provided by Sphagnum hummocks in humid zones of the peat bog, especially in the current critical context of climate warming. 相似文献
17.
Biodiversity and climate change use scenarios framework for the GEOSS interoperability pilot process
《Ecological Informatics》2009,4(1):23-33
Climate change threatens to commit 15–37% of species to extinction by 2050. There is a clear need to support policy-makers analyzing and assessing the impact of climate change along with land use changes. This requires a megascience infrastructure that is capable of discovering and integrating enormous volumes of multi-disciplinary data, i.e. data from biodiversity, earth observation, and climatic archives. Metadata and services interoperability is necessary. The Global Earth Observation System of Systems (GEOSS) works to realize such an interoperability infrastructure based on systems architecture standardization. In this paper we describe the results of linking the infrastructures of Climate Change research and Biodiversity research together using the approach envisioned by GEOSS. In fact, we present and discuss a service-oriented framework which was applied to implement and demonstrate the Climate Change and Biodiversity use scenario of the GEOSS Interoperability Process Pilot Project (IP3). This interoperability is done for the purpose of enabling scientists to do large-scale ecological analysis. We describe a generic use scenario and related modelling workbench that implement an environment for studying the impacts of climate change on biodiversity. The Service Oriented Architecture framework, which realizes this environment, is described. Its standard-based components and services, according to GEOSS requirements, are discussed. This framework was successfully demonstrated at the GEO IV Ministerial Meeting in Cape Town, South Africa November 2007. 相似文献
18.
Developing higher resolution climate change scenarios for agricultural risk assessment: progress,challenges and prospects 总被引:2,自引:0,他引:2
Climate change presents perhaps the greatest economic and environmental challenge we have ever faced. Climate change and its associated impacts, adaptation and vulnerability have become the focus of current policy, business and research. This paper provides invaluable information for those interested in climate change and its impacts. This paper comprehensively reviews the advances made in the development of regional climate change scenarios and their application in agricultural impact, adaptation and vulnerability assessment. Construction of regional climate change scenarios evolved from the application of arbitrary scenarios to the application of scenarios based on general circulation models (GCMs). GCM-based climate change scenarios progressed from equilibrium climate change scenarios to transient climate change scenarios; from the use of direct GCM outputs to the use of downscaled GCM outputs; from the use of single scenarios to the use of probabilistic climate change scenarios; and from the application of mean climate change scenarios to the application of integrated climate change scenarios considering changes in both mean climate and climate variability. 相似文献
19.
Sanz-Sáez Á Erice G Aguirreolea J Muñoz F Sánchez-Díaz M Irigoyen JJ 《Journal of plant physiology》2012,169(8):782-788
Elevated CO(2) may decrease alfalfa forage quality and in vitro digestibility through a drop in crude protein and an enhancement of fibre content. The aim of the present study was to analyse the effect of elevated CO(2), elevated temperature and Sinorhizobium meliloti strains (102F78, 102F34 and 1032 GMI) on alfalfa yield, forage quality and in vitro dry matter digestibility. This objective is in line with the selection of S. meliloti strains in order to maintain high forage yield and quality under future climate conditions. Plants inoculated with the 102F34 strain showed more DM production than those inoculated with 1032GMI; however, these strains did not show significant differences with 102F78 plants. Neutral or acid detergent fibres were not enhanced in plants inoculated with the 102F34 strain under elevated CO(2) or temperature and hence, in vitro dry matter digestibility was unaffected. Crude protein content, an indicator of forage quality, was negatively related to shoot yield. Plants inoculated with 102F78 showed a similar shoot yield to those inoculated with 102F34, but had higher crude protein content at elevated CO(2) and temperature. Under these climate change conditions, 102F78 inoculated plants produced higher quality forage. However, the higher digestibility of plants inoculated with the 102F34 strain under any CO(2) or temperature conditions makes them more suitable for growing under climate change conditions. In general, elevated CO(2) in combination with high temperature (Climate Change scenario) reduced IVDMD and CP content and enhanced fibre content, which means that animal production will be negatively affected. 相似文献
20.
Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses 总被引:1,自引:0,他引:1
Samuel C. Snedaker 《Hydrobiologia》1995,295(1-3):43-49
The principal scenario concerning the potential effects of climate change on mangrove forest communities revolves around sealevel rise with emphases on coastal abandonment and inland retreat attributable to flooding and saline intrusion. However, at the decade to century scale, changes in precipitation and catchment runoff may be a more significant factor at the regional level. Specifically, for any given sealevel elevation it is hypothesized that reduced rainfall and runoff would necessarily result in higher salinity and greater seawater-sulfate exposure. This would likely be associated with decreased production and increased sediment organic matter decomposition leading to subsidence. In contrast, higher rainfall and runoff would result in reduced salinity and exposure to sulfate, and also increase the delivery of terrigenous nutrients. Consequently, mangrove production would increase and sediment elevations would be maintained. Support for this scenario derives from studies of the high production in saline mangrove impoundments which are depleted in seawater sulfate. This paper also examines other components of climate change, such as UVb, temperature, and storm frequency, and presents a suite of hypotheses and analytical protocols to encourage scientific discussion and testing. 相似文献