首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer of maternal immunoglobulins (Igs) plays a significant role in fetal initial humoral immunity, of which process has changed and diversified during the evolution of vertebrates. IgY is a key molecular in antibody evolution which links ancient Igs and mammalian Igs such as IgG and IgE. IgY’s transfer to the embryo is a two-step receptor-mediated process, including the transfer from the maternal bloodstream to the yolk sac, and from the yolk sac to the embryo. IgY’s neonatal Fc receptor (FcRY) mainly functions in the second process. This article reviews IgY’s status in antibody evolution and IgY’s structure and application. Furthermore, this review compares the binding and transferring mechanism between mammalian IgG, and IgG’s neonatal Fc receptor and chicken IgY–FcRY. Details of IgY–FcRY combination, such as combining conditions required, IgY–FcRY binding stoichiometry and exact binding sites on both FcRY and IgY are discussed. Likewise, the endocytosis, the main mechanism of IgY–FcRY transfer and recycling mechanism are analyzed. Related knowledge might be important for better understanding antibody and receptor evolution, antibody–receptor interaction and antibody function. Furthermore, such kind of knowledge might be useful for antibody drug research and development.  相似文献   

2.
In mammals the transfer of passive immunity from mother to young is mediated by the MHC-related receptor FcRn, which transports maternal IgG across epithelial cell barriers. In birds, maternal IgY in egg yolk is transferred across the yolk sac to passively immunize chicks during gestation and early independent life. The chicken yolk sac IgY receptor (FcRY) is the ortholog of the mammalian phospholipase A2 receptor, a mannose receptor family member, rather than an FcRn or MHC homolog. FcRn and FcRY both exhibit ligand binding at the acidic pH of endosomes and ligand release at the slightly basic pH of blood. Here we show that FcRY expressed in polarized mammalian epithelial cells functioned in endocytosis, bidirectional transcytosis, and recycling of chicken FcY/IgY. Confocal immunofluorescence studies demonstrated that IgY binding and endocytosis occurred at acidic but not basic pH, mimicking pH-dependent uptake of IgG by FcRn. Colocalization studies showed FcRY-mediated internalization via clathrin-coated pits and transport involving early and recycling endosomes. Disruption of microtubules partially inhibited apical-to-basolateral and basolateral-to-apical transcytosis, but not recycling, suggesting the use of different trafficking machinery. Our results represent the first cell biological evidence of functional equivalence between FcRY and FcRn and provide an intriguing example of how evolution can give rise to systems in which similar biological requirements in different species are satisfied utilizing distinct protein folds.  相似文献   

3.
Immunoglobulin Y (IgY) is central to our understanding of immunoglobulin evolution. It has links to antibodies from the ancestral IgM to the mucosal IgX and IgA, as well as to mammalian serum IgG and IgE. IgY is found in amphibians, birds and reptiles, and as their most abundant serum antibody, is orthologous to mammalian IgG. However, IgY has the same domain architecture as IgM and IgE, lacking a hinge region and comprising four heavy‐chain constant domains. The relationship between IgY and the mucosal antibodies IgX and IgA is discussed herein, in particular the question of how IgA could have contributed to the emergence of IgY. Although IgY does not contain a hinge region, amphibian IgF and duck‐billed platypus IgY/O, which are closely related to IgY, do contain this region, as does mammalian IgG, IgA and IgD. A hinge region must therefore have evolved at least three times independently by convergent evolution. In the absence of three‐dimensional structural information for the complete Fc fragment of chicken IgY (IgY‐Fc), it remains to be discovered whether IgY displays the same conformational properties as IgM and IgE, which exhibit substantial flexibility in their Fc regions. IgY has three characterised Fc receptors, chicken Ig‐like receptor AB1 (CHIR‐AB1), the chicken yolk sac IgY receptor (FcRY) and Gallus gallus Fc receptor (ggFcR). These receptors bind to IgY at sites that are structurally homologous to mammalian counterparts; IgA/FcαRI for CHIR‐AB1, IgG/FcRn for FcRY and IgE/Fc?RI and IgG/FcγR for ggFcR. These resemblances reflect the close evolutionary relationships between IgY and IgA, IgG and IgE. However, the evolutionary distance between birds and mammals allows for the ready generation of IgY antibodies to conserved mammalian proteins for medical and biotechnological applications. Furthermore, the lack of reactivity of IgY with mammalian Fc receptors, and the fact that large quantities of IgY can be made quickly and cheaply in chicken eggs, offers important advantages and considerable potential for IgY in research, diagnostics and therapeutics.  相似文献   

4.
《The Journal of cell biology》1990,111(5):1867-1876
The yolk sac of the fetal rat and the proximal small intestine of the neonatal rat selectively transport maternal IgG. IgG-Fc receptors are thought to mediate transport across the epithelium of both tissues. We used a mouse mAb (MC-39) against the 45-54-kD component of the Fc receptor of the neonatal intestine to find an antigenically related protein that might function as an Fc receptor in fetal yolk sac. In immunoblots of yolk sac, MC-39 recognized a protein band with apparent molecular mass of 54-58 kD. MC-39 bound to the endoderm of yolk sac in immunofluorescence studies. In immunogold-labeling experiments MC-39 was associated mainly with small vesicles in the apical cytoplasm and in the region near the basolateral membrane of endodermal cells. The MC- 39 cross-reactive protein and beta 2-microglobulin, a component of the intestinal Fc receptor, were copurified from detergent-solubilized yolk sac by an affinity purification that selected for proteins which, like the intestinal receptor, bound to IgG at pH 6.0 and eluted at pH 8.0. In summary, the data suggest that we have isolated the Fc receptor of the yolk sac and that this receptor is structurally and functionally related to the Fc receptor of the neonatal intestine. An unexpected finding is that, unlike the intestinal receptor which binds maternal IgG on the apical cell surface, the yolk sac receptor appears to bind IgG only within apical compartments which we suggest represent the endosomal complex.  相似文献   

5.
Cells from intraembryonic mesenchyme, yolk sac, bursa of Fabricius, and thymus from chicken embryos at different stages of development were studied for the presence of IgG Fc receptors by EA-rosette formation and binding of heat-aggregated chicken IgG (agg IgG). Cells with Fc receptors were found in high frequency in the intraembryonic mesenchyme as early as on the third day of incubation, in the yolk sac on the 7th day, in the bursa on the 10th day, and in the thymus on the 16th day of embryonic development. In the bursa the number of agg IgG binding cells increased with the age of the embryo and remained high after hatching, whereas in the thymus the peak value (76%) was observed on the 16th embryonic day, and after hatching only about 10% of the cells expressed the agg IgG receptors. The results also suggest that the appearance of IgG Fc receptors precedes the expression of B-L (Ia-like) antigens and of cytoplasmic and surface immunoglobulins on early lymphoid cells of the chicken embryo.  相似文献   

6.
The chick yolk sac endoderm transports maternal immunoglobulin G (IgG) from the yolk into the embryo during development, providing the newly hatched chick with passive immunity until it becomes immunocompetent. To study this transport process, chick yolk sac endodermal cells isolated from embryos of 6 to 18 days of incubation were grown in vitro on a collagen substrate. The cultured cells possessed a remarkable structural similarity to the in vivo tissue and reformed a polarized confluent epithelium with tight junctions and desmosomes joining the cells at their apical margins. In addition, the cells exhibited apical microvilli, numerous phagolysosomes in the cytoplasm and retained the expression of the yolk sac endoderm-specific enzyme marker, cysteine lyase. Importantly, the cultured cells retained the ability to specifically bind IgG as demonstrated by indirect immunofluorescence. Chicken IgG bound to the cultured cells at 4 degrees C in a diffuse pattern that clustered into a punctate pattern when a second antibody was used. Cultures from yolk sacs of day 6 through day 18 of development all demonstrated this immunofluorescent labeling for at least 14 days in culture. These results demonstrate that cultured yolk sac endoderm maintains its differentiated morphology and ability to bind IgG.  相似文献   

7.
IgY is the principal serum antibody in birds and reptiles, and an IgY-like molecule was the evolutionary precursor of both mammalian IgG and IgE. A receptor for IgY on chicken monocytes, chicken leukocyte receptor AB1 (CHIR-AB1), lies in the avian leukocyte receptor cluster rather than the classical Fc receptor cluster where the genes for mammalian IgE and IgG receptors are found. IgG and IgE receptors bind to the lower hinge region of their respective antibodies with 1:1 stoichiometry, whereas the myeloid receptor for IgA, FcαRI, and the IgG homeostasis receptor, FcRn, which are found in the mammalian leukocyte receptor cluster, bind with 2:1 stoichiometry between the heavy chain constant domains 2 and 3 of each heavy chain. In this paper, the extracellular domain of CHIR-AB1 was expressed in a soluble form and shown to be a monomer that binds to IgY-Fc with 2:1 stoichiometry. The two binding sites have similar affinities: Ka1 = 7.22 ± 0.22 × 105 m−1 and Ka2 = 3.63 ± 1.03 × 106 m−1 (comparable with the values reported for IgA binding to its receptor). The affinity constants for IgY and IgY-Fc binding to immobilized CHIR-AB1 are 9.07 ± 0.07 × 107 and 6.11 ± 0.02 × 108 m−1, respectively, in agreement with values obtained for IgY binding to chicken monocyte cells and comparable with reported values for human IgA binding to neutrophils. Although the binding site for CHIR-AB1 on IgY is not known, the data reported here with a monomeric receptor binding to IgY at two sites with low affinity suggest an IgA-like interaction.Fc receptors link the specificity of the adaptive immune system with the effector mechanisms of innate immune cells. In birds and reptiles, IgY is the principal serum antibody, and both mammalian IgG and IgE have evolved from an IgY-like ancestor, so studies of IgY offer insights into their origins (1). The historical contribution of chicken immunology to a wider understanding of the subject has been considerable (2), and recently several chicken IgY-Fc receptors have been identified. In this paper, the chicken antibody, IgY, is shown to bind to a chicken leukocyte receptor, CHIR-AB1,4 in a different manner from that of its mammalian orthologues, IgG and IgE, to their respective Fc receptors.Phagocytosis, mediated in mammals by IgG, and passive cutaneous anaphylaxis, mediated by both IgG and IgE in mammals, have been observed in chickens (3, 4), presumably both effected by IgY. In vitro, IgY binds to monocyte cell lines (5, 6), and an IgY receptor (CHIR-AB1) has been identified that is able to mediate the influx of calcium into cells (5).The genes for the mammalian high affinity IgE receptor, and several IgG receptors, are located in the classical Fc receptor cluster, whereas in chickens, this cluster is represented by a single gene, the product of which has been expressed and found not to bind IgY (7). Intriguingly, the first IgY leukocyte receptor, CHIR-AB1, was found to be a member of the chicken leukocyte receptor cluster (LRC) (5), adjacent to over 100 genes with high intersequence homology (8). This finding, together with phylogenetic analysis of the orthologous Fc receptor gene clusters (7, 9), implies that during the evolution of the IgY-like ancestor of both IgG and IgE, antibody-Fc binding function migrated from proteins expressed in the LRC to those in the classical Fc receptor cluster. The human LRC is the site of FcαRI, the leukocyte receptor for IgA (an antibody involved in mucosal immunity), the fetal IgG receptor (FcRn, involved in adult IgG homeostasis), and also a number of natural killer cell receptors including the HLA-G ligand, KIR2DL4 (10). A further leukocyte receptor for chicken IgY, also related to LRC receptors, was identified recently, on chromosome 20 (11), and remains to be characterized.Typically, the stoichiometry of the receptor-antibody complex differs for receptors located in the classical Fc receptor cluster and the LRC. Crystal structures of IgG complexes with FcγRIII and of IgE with FcϵRI show 1:1 receptor:antibody stoichiometry, with the receptor binding across both heavy chains in the lower hinge (12). In contrast, the crystal structure of FcαRI complexed with IgA shows 2:1 stoichiometry (13) as does that of FcRn with IgG (14), with the two receptors binding between the heavy chain constant domains 2 and 3 on each heavy chain. The IgY/receptor interaction could have either stoichiometry; on the one hand, IgY is an orthologue of IgG and IgE, which can both show 1:1 stoichiometry, but on the other hand, the location of the IgY receptor, CHIR-AB1, in the same gene cluster as the IgA and FcRn receptors suggests the possibility of a 2:1 stoichiometry. Consistent with either of these binding modes, the crystal structure of IgY-Fc reveals that many of the residues located in the receptor-binding sites in human IgE, IgG, and IgA are present and accessible in IgY (15).The single extracellular domain of the chicken leukocyte IgY receptor, CHIR-AB1, has been expressed in insect cells by Arnon et al. (16), who showed that this preparation consists of a mixture of soluble monomer and dimer. Because of the heterogeneity of the protein, it was not possible to ascertain whether the observed 2:1 stoichiometry of receptor binding to antibody involved two monomers or a single dimer binding to IgY. Thus, it was not possible to answer the question of whether the antibody-receptor complex most resembles that of human IgA or of IgG and IgE. We have expressed the extracellular domain of CHIR-AB1 in human HEK cells. It is a monomer, and we report here that it binds to IgY and IgY-Fc with 2:1 stoichiometry.  相似文献   

8.
The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits--having one extra copy of the FcRn when hemizygous and two extra copies when homozygous--showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies.  相似文献   

9.
CHIR-AB1 is a newly identified avian immunoglobulin (Ig) receptor that includes both activating and inhibitory motifs and was therefore classified as a potentially bifunctional receptor. Recently, CHIR-AB1 was shown to bind the Fc region of chicken IgY and to induce calcium mobilization via association with the common γ-chain, a subunit that transmits signals upon ligation of many different immunoreceptors. Here we describe the 1.8-Å-resolution crystal structure of the CHIR-AB1 ectodomain. The receptor ectodomain consists of a single C2-type Ig domain resembling the Ig-like domains found in mammalian Fc receptors such as FcγRs and FcαRI. Unlike these receptors and other monomeric Ig superfamily members, CHIR-AB1 crystallized as a 2-fold symmetrical homodimer that bears no resemblance to variable or constant region dimers in an antibody. Analytical ultracentrifugation demonstrated that CHIR-AB1 exists as a mixture of monomers and dimers in solution, and equilibrium gel filtration revealed a 2:1 receptor/ligand binding stoichiometry. Measurement of the 1:1 CHIR-AB1/IgY interaction affinity indicates a relatively low affinity complex, but a 2:1 CHIR-AB1/IgY interaction allows an increase in apparent affinity due to avidity effects when the receptor is tethered to a surface. Taken together, these results add to the structural understanding of Fc receptors and their functional mechanisms.  相似文献   

10.
An ancestor of avian IgY was the evolutionary precursor of mammalian IgG and IgE, and present day chicken IgY performs the function of human IgG despite having the domain structure of human IgE. The kinetics of IgY binding to its receptor on a chicken monocyte cell line, MQ-NCSU, were measured, the first time that the binding of a non-mammalian antibody to a non-mammalian cell has been investigated (k(+1) = 1.14 +/- 0.46 x 10(5) mol(-1)sec(-1), k(-1) = 2.30 +/- 0.14 x 10(-3) s(-1), and K(a) = 4.95 x 10(7) m(-1)). This is a lower affinity than that recorded for mammalian IgE-high affinity receptor interactions (Ka approximately 10(10) m(-1)) but is within the range of mammalian IgG-high affinity receptor interactions (human: Ka approximately 10(8)-10(9) m(-1) mouse: Ka approximately 10(7)-10(8) m(-1). IgE has an extra pair of immunoglobulin domains when compared with IgG. Their presence reduces the dissociation rate of IgE from its receptor 20-fold, thus contributing to the high affinity of IgE. To assess the effect of the equivalent domains on the kinetics of IgY binding, IgY-Fc fragments with and without this domain were cloned and expressed in mammalian cells. In contrast to IgE, their presence in IgY has little effect on the association rate and no effect on dissociation. Whatever the function of this extra domain pair in avian IgY, it has persisted for at least 310 million years and has been co-opted in mammalian IgE to generate a uniquely slow dissociation rate and high affinity.  相似文献   

11.
Chicken egg yolk immunoglobulin (IgY) is a functional substitute for mammalian IgG for antigen detection. Traditional IgY purification methods involve multi‐step procedures resulting in low purity and recovery of IgY. In this study, we developed a simple IgY purification system using IgY‐specific peptides identified by T7 phage display technology. From disulfide‐constrained random peptide libraries constructed on a T7 phage, we identified three specific binding clones (Y4‐4, Y5‐14, and Y5‐55) through repeated biopanning. The synthetic peptides showed high binding specificity to IgY‐Fc and moderate affinity for IgY‐Fc (Kd: Y4‐4 = 7.3 ± 0.2 μM and Y5‐55 = 4.4 ± 0.1 μM) by surface plasmon resonance analysis. To evaluate the ability to purify IgY, we performed immunoprecipitation and affinity high‐performance liquid chromatography using IgY‐binding peptides; the result indicated that these peptides can be used as affinity ligands for IgY purification. We then used a peptide‐conjugated column to purify IgY from egg yolks pre‐treated using an optimized delipidation technique. Here, we report the construction of a cost‐effective, one‐step IgY purification system, with high purity and recovery. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.  相似文献   

12.
Wildlife inhabiting urban environments exhibit drastic changes in morphology, physiology, and behavior. It has often been argued that these phenotypic responses could be the result of micro‐evolutionary changes following the urbanization process. However, other mechanisms such as phenotypic plasticity, maternal effects, and developmental plasticity could be involved as well. To address maternal effects as potential mechanisms, we compared maternal hormone and antibody concentrations in eggs between city and forest populations of European blackbirds (Turdus merula), a widely distributed species for which previous research demonstrated differences in behavioral and physiological traits. We measured egg and yolk mass, yolk concentrations of androgens (androstenedione [A4], testosterone [T], 5α‐dihydrotestosterone [5α‐DHT], and immunoglobulins [IgY]) and related them to population, clutch size, laying order, embryo sex, and progress of breeding season. We show (a) earlier onset of laying in the city than forest population, but similar egg and clutch size; (b) higher overall yolk androgen concentrations in the forest than the city population (sex‐dependent for T); (c) greater among‐female variation of yolk T and 5α‐DHT concentrations in the forest than city population, but similar within‐clutch variation; (d) similar IgY concentrations with a seasonal decline in both populations; and (e) population‐specific positive (city) or negative (forest) association of yolk A4 and T with IgY concentrations. Our results are consistent with the hypotheses that hormone‐mediated maternal effects contribute to differences in behavioral and physiological traits between city and forest individuals and that yolk androgen and immunoglobulin levels can exhibit population‐specific relationships rather than trade‐off against each other.  相似文献   

13.
Children are particularly susceptible to typhoid fever caused by the bacterial pathogen Salmonella Typhi. Typhoid fever is prevalent in developing countries where diets can be less well-balanced. Here, using a murine model, we investigated the role of the macronutrient composition of the diet in maternal vaccination efficacies of two subunit vaccines targeting typhoid toxin: ToxoidVac and PltBVac. We found that maternal vaccinations protected all offspring against a lethal-dose typhoid toxin challenge in a balanced, normal diet (ND) condition, but the declined protection in a malnourished diet (MD) condition was observed in the PltBVac group. Despite the comparable antibody titers in both MD and ND mothers, MD offspring had a significantly lower level of typhoid toxin neutralizing antibodies than their ND counterparts. We observed a lower expression of the neonatal Fc receptor on the yolk sac of MD mothers than in ND mothers, agreeing with the observed lower antibody titers in MD offspring. Protein supplementation to MD diets, but not fat supplementation, increased FcRn expression and protected all MD offspring from the toxin challenge. Similarly, providing additional typhoid toxin-neutralizing antibodies to MD offspring was sufficient to protect all MD offspring from the toxin challenge. These results emphasize the significance of balanced/normal diets for a more effective maternal vaccination transfer to their offspring.  相似文献   

14.
Engineered human IgG antibodies with longer serum half-lives in primates   总被引:3,自引:0,他引:3  
The neonatal Fc receptor (FcRn) plays an important role in regulating the serum half-lives of IgG antibodies. A correlation has been established between the pH-dependent binding affinity of IgG antibodies to FcRn and their serum half-lives in mice. In this study, molecular modeling was used to identify Fc positions near the FcRn binding site in a human IgG antibody that, when mutated, might alter the binding affinity of IgG to FcRn. Following mutagenesis, several IgG2 mutants with increased binding affinity to human FcRn at pH 6.0 were identified at Fc positions 250 and 428. These mutants do not bind to human FcRn at pH 7.5. A pharmacokinetics study of two mutant IgG2 antibodies with increased FcRn binding affinity indicated that they had serum half-lives in rhesus monkeys approximately 2-fold longer than the wild-type antibody.  相似文献   

15.
16.
W L Martin  P J Bjorkman 《Biochemistry》1999,38(39):12639-12647
The neonatal Fc receptor (FcRn) facilitates the transfer of maternal immunoglobulin G (IgG) to offspring and prolongs the half-life of serum IgG. FcRn binds IgG in acidic intracellular vesicles and releases IgG upon exposure to the basic pH of the bloodstream. The crystal structure of an FcRn/Fc complex revealed FcRn dimers bridged by homodimeric Fc molecules to create an oligomeric array with two receptors per Fc [Burmeister et al. (1994) Nature 372, 379-383], consistent with the 2:1 FcRn:Fc stoichiometry observed in solution [Huber et al. (1993) J. Mol. Biol. 230, 1077-1083; Sánchez et al. (1999) Biochemistry 38, 9471-9476]. Two distinct 2:1 FcRn/Fc complexes were present in the cocrystal structure: a complex containing an FcRn dimer interacting with an Fc and a complex in which single FcRn molecules are bound to both sides of the Fc homodimer. To determine which of the two possible 2:1 FcRn/Fc complexes exists in solution, we generated recombinant Fc molecules with zero, one, and two FcRn binding sites and studied their interactions with a soluble form of rat FcRn. The wild-type Fc with two FcRn binding sites binds two FcRn molecules under all assay conditions, and the nonbinding Fc with no FcRn binding sites shows no specific binding. The heterodimeric Fc with one FcRn binding site binds one FcRn molecule, suggesting that the 2:1 FcRn/wild-type Fc complex formed in solution consists of single FcRn molecules binding to both sides of Fc rather than an FcRn dimer binding to a single site on Fc.  相似文献   

17.
Chicken IgY (egg yolk immunoglobulin) is a functional equivalent of mammalian IgG. Traditional methods for IgY purification involve multi-step procedures that result in low recovery of IgY. After a large scale screening of our 700-member synthetic ligand library synthesized by epichlorohydrin and cyanuric chloride methods, a high efficiency ligand of IgY was found. By one-step purification with this ligand, the purity of IgY could reach 92.1%, and the recovery of IgY could reach 78.2%. This synthetic ligand had a higher binding capacity of 74.8 mg IgY/ml and had no negative effects on immunoreactivity. Remarkably, this ligand was also highly stable and could resist 1M NaOH, thus having great potential for the industrial-scale production of IgY.  相似文献   

18.
The dose of toxicant reaching the embryo is a critical determinant of developmental toxicity, and is likely to be a key factor responsible for interspecies variability in response to many test agents. This review compares the mechanisms regulating disposition of toxicants from the maternal circulation to the embryo during organogenesis in humans and the two species used predominantly in regulatory developmental toxicity testing, rats and rabbits. These three species utilize fundamentally different strategies for maternal-embryonic exchange during early pregnancy. Early postimplantation rat embryos rely on the inverted visceral yolk sac placenta, which is in intimate contact with the uterine epithelium and is equipped with an extensive repertoire of transport mechanisms, such as pinocytosis, endocytosis, and specific transporter proteins. Also, the rat yolk sac completely surrounds the embryo, such that the fluid-filled exocoelom survives through most of the period of organogenesis, and can concentrate compounds such as certain weak acids due to pH differences between maternal blood and exocelomic fluid. The early postimplantation rabbit conceptus differs from the rat in that the yolk sac is not closely apposed to the uterus during early organogenesis and does not completely enclose the embryo until relatively later in development (approximately GD13). This suggests that the early rabbit yolk sac might be a relatively inefficient transporter, a conclusion supported by limited data with ethylene glycol and one of its predominant metabolites, glycolic acid, given to GD9 rabbits. In humans, maternal-embryo exchange is thought to occur via the chorioallantoic placenta, although it has recently been conjectured that a supplemental route of transfer could occur via absorption into the yolk sac. Knowledge of the mechanisms underlying species-specific embryonic disposition, factored together with other pharmacokinetic characteristics of the test compound and knowledge of critical periods of susceptibility, can be used on a case-by-case basis to make more accurate extrapolations of test animal data to the human.  相似文献   

19.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

20.
Receptors interacting with the constant domain of immunoglobulins (Igs) have a number of important functions in vertebrates. They facilitate phagocytosis by opsonization, are key components in antibody-dependent cellular cytotoxicity as well as activating cells to release granules. In mammals, four major types of classical Fc receptors (FcRs) for IgG have been identified, one high-affinity receptor for IgE, one for both IgM and IgA, one for IgM and one for IgA. All of these receptors are related in structure and all of them, except the IgA receptor, are found in primates on chromosome 1, indicating that they originate from a common ancestor by successive gene duplications. The number of Ig isotypes has increased gradually during vertebrate evolution and this increase has likely been accompanied by a similar increase in isotype-specific receptors. To test this hypothesis we have performed a detailed bioinformatics analysis of a panel of vertebrate genomes. The first components to appear are the poly-Ig receptors (PIGRs), receptors similar to the classic FcRs in mammals, so called FcRL receptors, and the FcR γ chain. These molecules are not found in cartilagous fish and may first appear within bony fishes, indicating a major step in Fc receptor evolution at the appearance of bony fish. In contrast, the receptor for IgA is only found in placental mammals, indicating a relatively late appearance. The IgM and IgA/M receptors are first observed in the monotremes, exemplified by the platypus, indicating an appearance during early mammalian evolution. Clearly identifiable classical receptors for IgG and IgE are found only in marsupials and placental mammals, but closely related receptors are found in the platypus, indicating a second major step in Fc receptor evolution during early mammalian evolution, involving the appearance of classical IgG and IgE receptors from FcRL molecules and IgM and IgA/M receptors from PIGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号