首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

2.
Studies on the possible interference of colchicine and H2O2 with the activity of some antioxidant enzymes were carried out on Arabidopsis thaliana v. Columbia grown in Murashige and Skooge nutrient medium. Measurements of superoxide dismutase (SOD), guaiacol peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT) activities were conducted spectrophotometrically. In the presence of colchicine, SOD activity increased, while CAT, APX and POX activities decreased. Inhibitory H2O2 effects on the activity of the enzymes were found. Colchicine pre-treatment resulted in an increase in CAT activity and a further increase in SOD activity in plants treated with H2O2.  相似文献   

3.
The effects of foliar spraying with spermidine (Spd), ranging in concentration from 0.25 to 0.50 mmol/L, on the antioxidant system under Cd^2 stress (range 0.1- 0.2 mmol/L Cd^2 ) in Typha latifolia L. grown hydroponically were investigated in order to offer a referenced evidence for an understanding of the mechanism by which polyamines (PAs) relieve the damage to plants by heavy metal and improve the phytoremediation efficiency of heavy metal-contaminated water. The results showed that Cd^2 stress induced oxidative injury, as evidenced by an increase in the generation of superoxide anion (O2), as well as the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents in both leaves and caudices. With the exception of superoxide dismutase (SOD) activity in the leaves, an increase in the activities of catalase (CAT), guaiacol peroxidase (GPX), and glutathione reductase (GR) was observed in both leaves and caudices, SOD activity was increased in caudices, and ascorbate peroxidase (APX) activity was increased in leaves following Cd^2 treatment. The reduced glutathione (GSH) content in both leaves and caudices and the reductive ascorbate content in leaves was obviously increased, which were prompted by the application of exogenous Spd. Spraying with Spd increased the activity of GR and APX in both leaves and caudices, whereas the activity of SOD, CAT, and GPX was increased only in caudices following spraying with Spd. The generation of O2 and the H2O2 and MDA content in both leaves and caudices decreased after spraying with Spd. The decrease in MDA was more obvious following the application of 0.25 than 0.50 mmol/L Spd. It is supposed that exogenous Spd elevated the tolerance of T. latifolia under Cd^2 stress primarily by increasing GR activity and the GSH level.  相似文献   

4.
The effects of foliar spraying with spermidine (Spd), ranging in concentration from 0.25 to 0.50mmol/L, on the antioxidant system under Cd2 stress (range 0.1- 0.2 mmol/L Cd2 ) in Typha latifolia L.grown hydroponically were investigated in order to offer a referenced evidence for an understanding of the mechanism by which polyamines (PAs) relieve the damage to plants by heavy metal and improve the phytoremediation efficiency of heavy metal-contaminated water. The results showed that Cd2 stress inhydrogen peroxide (H2O2) and malondialdehyde (MDA) contents in both leaves and caudices. With theexception of superoxide dismutase (SOD) activity in the leaves, an increase in the activities of catalase (CAT), guaiacol peroxidase (GPX), and glutathione reductase (GR) was observed in both leaves and caudices,SOD activity was increased in caudices, and ascorbate peroxidase (APX) activity was increased in leaves following Cd2 treatment. The reduced glutathione (GSH) content in both leaves and caudices and the reductive ascorbate content in leaves was obviously increased, which were prompted by the application of exogenous Spd. Spraying with Spd increased the activity of GR and APX in both leaves and caudices,whereas the activity of SOD, CAT, and GPX was increased only in caudices following spraying with Spd.with Spd. The decrease in MDA was more obvious following the application of 0.25 than 0.50 mmol/L Spd.It is supposed that exogenous Spd elevated the tolerance of T. latifolia under Cd2 stress primarily by increasing GR activity and the GSH level.  相似文献   

5.
以不结球白菜品种‘寒笑’种子为材料,研究高温(42℃)高湿(相对湿度100%)人工老化处理过程中种子活力及抗氧化相关特性的变化。结果显示:不结球白菜种子的发芽率、发芽势、发芽指数和活力指数随老化处理时间的延长而逐渐下降,不正常苗率逐渐增加;种子的超氧阴离子(O2.-)产生速率先增高后降低,过氧化氢(H2O2)含量逐渐增加,脂氧合酶(LOX)活性和丙二醛(MDA)含量下降,种子浸出液相对电导率增加;种子超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)活性随老化处理时间的延长逐渐下降,抗坏血酸过氧化物酶(APX)和谷胱甘肽过氧化物酶(GPX)活性在老化处理初期(老化3 d前)均增加,APX活性随后降低,GPX活性无显著变化;种子抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量在老化处理1 d后即显著降低并持续保持较低水平。研究表明,不结球白菜种子在人工加速老化过程中其抗氧化系统代谢紊乱并造成活性氧累积伤害,这可能是引起不结球白菜种子老化的重要原因。  相似文献   

6.
Leaves of maize (Zea mays L.) seedlings were supplied with different concentrations of abscisic acid (ABA). Its effects on the levels of superoxide radical (O(2)(-)), hydrogen peroxide (H(2)O(2)) and the content of catalytic Fe, the activities of several antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), the contents of several non-enzymatic antioxidants such as ascorbate (ASC), reduced glutathione (GSH), alpha-tocopherol (alpha-TOC) and carotenoid (CAR), and the degrees of the oxidative damage to the membrane lipids and proteins were examined. Treatment with 10 and 100 microM ABA significantly increased the levels of O(2)(-) and H(2)O(2), followed by an increase in activities of SOD, CAT, APX and GR, and the contents of ASC, GSH, alpha-TOC and CAR in a dose- and time-dependent pattern in leaves of maize seedlings. An oxidative damage expressed as lipid peroxidation, protein oxidation, and plasma membrane leakage did not occur except for a slight increase with 100 microM ABA treatment for 24 h. Treatment with 1,000 microM ABA led to a more abundant generation of O(2)(-) and H(2)O(2) and a significant increase in the content of catalytic Fe, which is critical for H(2)O(2)-dependent hydroxyl radical production. The activities of these antioxidative enzymes and the contents of alpha-TOC and CAR were still maintained at a higher level, but no longer further enhanced when compared with the treatment of 100 microM ABA. The contents of ASC and GSH had no changes in leaves treated with 1,000 microM ABA. These results indicate that treatment with low concentrations of ABA (10 to 100 microM) induced an antioxidative defence response against oxidative damage, but a high concentration of ABA (1,000 microM) induced an excessive generation of AOS and led to an oxidative damage in plant cells.  相似文献   

7.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl处理下红树植物秋茄(Kan-deliacandel)幼苗叶片中抗氧化酶活性、抗氧化物质及脯氨酸含量的影响。结果表明:NaCl处理下,秋茄幼苗叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等4种活性氧清除酶的活性均受到明显抑制(P<0.05),SNP可以不同程度地恢复SOD、POD、CAT的活性,但对APX活性影响不大;SNP提高谷胱甘肽(GSH)及类胡萝卜素(Car)的含量,促进脯氨酸含量的上升,显著降低叶片中过氧化氢(H2O2)和丙二醛(MDA)的累积。表明外源NO可以缓解NaCl处理诱导的秋茄幼苗叶片氧化损伤,降低膜脂过氧化水平,有利于秋茄适应盐生环境。  相似文献   

8.
研究了6-BA和A5A对渗透胁迫时杨树幼苗叶片光合作用光抑制和活性氧代谢的影响.结果表明,渗透胁迫时杨树叶片净光合速率(Pn)和表观量子效率(AQY)降低,光合作用光抑制加剧,超氧化物歧化酶(SOD)活性升高,抗坏血酸过氧化物酶(APX)活性降低,O2产生加快,H2O2和膜脂过氧化产物丙二醛(MDA)含量升高.6-BA和A5A预处理使胁迫时叶片SOD和APx活性升高。O2生成减少。H2O22和MDA含量降低,同时缓解了光合作用的光抑制.相关分析表明,杨树叶片活性氧水平和MDA含量与Pn和AQY呈负相关.胁迫时杨树叶片活性氧的积累与光合作用光抑制有一定关系,6-BA和A5A对光抑制的缓解作用与其对活性氧清除系统的促进作用有关。  相似文献   

9.
The effects of NaCl stress on the activity of anti-oxidant enzymes (superoxide dismutase, catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR)), anti-oxidant molecules (ascorbate and glutathione), and parameters of oxidative stress (malondialdehyde (MDA), electrolyte leakage, and H2O2 concentrations) were investigated in Cakile maritima, a halophyte frequent along the Tunisian seashore. Seedlings were grown in the presence of salt (100, 200, and 400 mmol/L NaCl). Plants were harvested periodically over 20 days. Growth was maximal in the presence of 0-100 mmol/L NaCl. At 400 mmol/L NaCl, growth decreased significantly. The salt tolerance of C. maritima, at moderate salinities, was associated with the lowest values of the parameters indicative of oxidative stress, namely the highest activities of POD, CAT, APX, DHAR, and GR and high tissue content of ascorbate and glutathione. However, prolonged exposure to high salinity resulted in a decrease in anti-oxidant activities and high MDA content, electrolyte leakage, and H2O2 concentrations. These results suggest that anti-oxidant systems participate in the tolerance of C. maritima to moderate salinities.  相似文献   

10.
臭氧浓度升高对油松抗氧化系统活性的影响   总被引:4,自引:0,他引:4  
以生长在开顶箱内的油松为试材,对高浓度臭氧(80 nmol·mol-1)条件下油松(Pinus tabulaeformis)针叶中超氧阴离子自由基(O2·)产生速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性与抗坏血酸(ASA)含量进行测定.结果表明:高浓度臭氧使O2·产生速率提高,H2O2 和MDA含量增加.ASA含量与SOD、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性在高浓度臭氧熏蒸的前期升高,随后下降并低于对照.说明生长季前期,油松抗氧化系统对高浓度臭氧存在适应性反应,但不能抵抗长期臭氧胁迫带来的氧化伤害.  相似文献   

11.
We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.  相似文献   

12.
13.
The effect of silicon (Si) on the growth, sodium (Na), chloride (Cl), boron (B) concentrations, lipid peroxidation (MDA), membrane permeability (MP), lypoxygenase activity (LOX), proline (PRO) and H(2)O(2) accumulation, and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of barley grown in original sodic-B toxic soil were investigated. Si applied to the sodic-B toxic soil at 70, 140 and 280 mg kg(-1) levels significantly increased Si concentrations of the plants and counteracted the deleterious effects of sodicity (Na ions) and B on shoot growth. Membrane permeability and the concentrations of H(2)O(2) and MDA increased, while PRO concentration decreased in plants grown in sodic-B toxic soil without Si. LOX activity was increased by applied Si. Compared with control plants, the activities of SOD and CAT were decreased, but APX was increased by applied Si levels.  相似文献   

14.
Shi Q  Bao Z  Zhu Z  He Y  Qian Q  Yu J 《Phytochemistry》2005,66(13):1551-1559
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione.  相似文献   

15.
根系渗透胁迫时杨树光合作用光抑制与活性氧的关系   总被引:20,自引:7,他引:13  
为更多地了解自然条件下活体叶片的光抑制,研究了渗透胁迫时杨树无性系幼苗叶片的光抑制与活性氧代谢的关系.结果表明,随胁迫时间的延长和胁迫强度的增大,杨树叶片O2^-生成加快,H2O2和丙二醛(MDA)含量增多,超氧物歧化酶(SOD)活性升高,过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性降低,活性氧代谢失衡,光合作用的光抑制加剧.用二乙基二硫代氨基甲酸铜盐抑制SOD活性,或用甲基紫精加速O2^-的生成,亦可使杨树叶片发生光抑制.渗透胁迫时杨树无性系幼苗清除H2O2能力降低,限制了叶片通过Mehler反应耗散过剩光能,防御光破坏作用的发挥;光抑制的发生与活性氧的积累有关.  相似文献   

16.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

17.
Antioxidative responses of Calendula officinalis under salinity conditions.   总被引:10,自引:0,他引:10  
To gain a better insight into long-term salt-induced oxidative stress, some physiological parameters in marigold (Calendula officinalis L.) under 0, 50 and 100 mM NaCl were investigated. Salinity affected most of the considered parameters. High salinity caused reduction in growth parameters, lipid peroxidation and hydrogen peroxide accumulation. Under high salinity stress, a decrease in total glutathione and an increase in total ascorbate (AsA + DHA), accompanied with enhanced glutathione reductase (GR, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activities, were observed in leaves. In addition, salinity induced a decrease in superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POX, EC 1.11.1.7) activities. The decrease in dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activities suggests that other mechanisms play a major role in the regeneration of reduced ascorbate. The changes in catalase (CAT, EC 1.11.1.6) activities, both in roots and in leaves, may be important in H2O2 homeostasis.  相似文献   

18.
The work evaluated the role of enzymatic and non-enzymatic antioxidants in cashew (Anacardium occidentale) leaves under 0, 50, 100, 150 and 200 mM NaCl. Salt stress increased protein oxidation and decreased the lipid peroxidation, indicating that lipids are less susceptible to oxidative damage. The superoxide dismutase (SOD) activity was not changed, ascorbate peroxidase (APX) activity steadily decreased while the catalase (CAT) activity strongly increased with the increasing NaCl concentration. High salinity also induced alterations in the ascorbate (AsA) and glutathione (GSH) redox state. The salt resistance in cashew may be associated with maintaining of SOD activity and upregulation of CAT activity in concert with the AsA and GSH antioxidants.  相似文献   

19.
Fath A  Bethke PC  Jones RL 《Plant physiology》2001,126(1):156-166
Gibberellins (GAs) initiate a series of events that culminate in programmed cell death, whereas abscisic acid (ABA) prevents this process. Reactive oxygen species (ROS) are key elements in aleurone programmed cell death. Incubation of barley (Hordeum vulgare) aleurone layers in H2O2 causes rapid death of all cells in GA- but not ABA-treated layers. Sensitivity to H2O2 in GA-treated aleurone cells results from a decreased ability to metabolize ROS. The amounts and activities of ROS scavenging enzymes, including catalase (CAT), ascorbate peroxidase, and superoxide dismutase are strongly down-regulated in aleurone layers treated with GA. CAT activity, protein, and Cat2 mRNA decline rapidly following exposure of aleurone layers to GA. In ABA-treated layers, on the other hand, the amount and activity of CAT and Cat2 mRNA increases. Incubation in ABA maintains high amounts of ascorbate peroxidase and superoxide dismutase, whereas GA brings about a rapid reduction in the amounts of these enzymes. These data imply that GA-treated cells loose their ability to scavenge ROS and that this loss ultimately results in oxidative damage and cell death. ABA-treated cells, on the other hand, maintain their ability to scavenge ROS and remain viable.  相似文献   

20.
The influence of aluminum (Al) on physiological and biological characteristics of soybean under manganese (Mn) stress was investigated. The results showed that Al suppressed the transport of Mn to shoots (Fig.2B, C), and subsequently alleviated the inhibition of shoot growth (Fig.1), decreased the chlorophyll content (Fig.4). Addition of Al diminished the increase in O(-*)(2) producing rate, the hydrogen peroxide (H(2)O(2)) content and malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) in soybean leaves caused by excessive Mn (Fig.5), and prevented the dropping of CAT activity to a low level under excessive Mn stress (Fig.6). Results of fractional analysis indicated that high levels of Al supply deduced mainly accumulation of Mn both in cell walls and organelles, but had no effect on it in soluble fractions (Fig.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号