首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

2.
Plants,mycorrhizal fungi and endobacteria: a dialog among cells and genomes   总被引:5,自引:0,他引:5  
This review focuses on mycorrhizas, which are associations between fungi and the roots of 90% of terrestrial plants. These are the most common symbioses in the world; they involve about 6000 species of fungi distributed through all the fungal phyla and about 240000 species of plants, including forest and crop plants. Thanks to mycorrhizal symbiosis and nutrient exchanges, regulated by complex molecular signals, the plant improves its vegetative growth, while the fungus accomplishes its life cycle. Molecular and cellular analyses demonstrate that during colonization the cellular organization of the two eukaryotes is completely remodeled. For example, in cortical cells, structural modifications involve both the host and the microbiont. Recent studies revealed that in arbuscular mycorrhizas (AM), system complexity is increased by the presence of a third symbiont: a bacterium living inside the fungus. The presence of this resident genome makes the investigation of the molecular dialogues among the symbiotic partners even more complex. Molecular analysis showed that the bacterium has genes involved in the acquisition of mineral nutrients. The experimental data support the current view that mycorrhizal symbioses are often tripartite associations.  相似文献   

3.
4.
Symbiotic interactions are common in nature. In dynamic or degraded environments, the ability to associate with multiple partners (i.e. broad specificity) may enable species to persist through fluctuations in the availability of any particular partner. Understanding how species interactions vary across landscapes is necessary to anticipate direct and indirect consequences of environmental degradation on species conservation. We asked whether mycorrhizal symbiosis by populations of a rare epiphytic orchid (Epidendrum firmum) is related to geographic or environmental heterogeneity. The latter would suggest that interactions are governed by environmental conditions rather than historic isolation of populations and/or mycorrhizal fungi. We used DNA-based methods to identify mycorrhizal fungi from eleven E. firmum populations in Costa Rica. We used molecular and phylogenetic analyses to compare associations. Epidendrum firmum exhibited broad specificity, associating with diverse mycorrhizal fungi, including six Tulasnellaceae molecular operational taxonomic units (MOTUs), five Sebacinales MOTUs and others. Notably, diverse mycorrhizal symbioses formed in disturbed pasture and roadside habitats. Mycorrhizal fungi exhibited significant similarity within populations (spatial and phylogenetic autocorrelation) and significant differences among populations (phylogenetic community dissimilarity). However, mycorrhizal symbioses were not significantly associated with biogeographic or environmental features. Such unexpected heterogeneity among populations may result from complex combinations of fine-scale environmental factors and macro-evolutionary patterns of change in mycorrhizal specificity. Thus, E. firmum exhibits broad specificity and the potential for opportunistic associations with diverse fungi. We suggest that these characteristics could confer symbiotic assurance when mycorrhizal fungi are stochastically available, which may be crucial in dynamic or disturbed habitats such as tropical forest canopies.  相似文献   

5.
Hornworts are considered the sister group to vascular plants, but their fungal associations remain largely unexplored. The ancestral symbiotic condition for all plants is, nonetheless, widely assumed to be arbuscular mycorrhizal with Glomeromycota fungi. Owing to a recent report of other fungi in some non-vascular plants, here we investigate the fungi associated with diverse hornworts worldwide, using electron microscopy and molecular phylogenetics. We found that both Glomeromycota and Mucoromycotina fungi can form symbioses with most hornworts, often simultaneously. This discovery indicates that ancient terrestrial plants relied on a wider and more versatile symbiotic repertoire than previously thought, and it highlights the so far unappreciated ecological and evolutionary role of Mucoromycotina fungi.  相似文献   

6.
Song F Q  Song G  Dong A R  Kong X S 《农业工程》2011,31(6):322-327
Arbuscular mycorrhizal (AM) fungi colonize the roots of over 80% of terrestrial plant species, forming mutually beneficial symbioses. During the colonization process, symbiotic partners recognize each other, and undergo observable morphological and physiological changes; indicating that symbiosis formation involves multiple factors that are finely regulated. Sometimes host plants generate a transient, weak, defense response. This response and its down-regulation play a very important role in the development of AM symbioses. Although AM fungi can infect a wide range of host root tissues, which host defense may play a crucial role is hypothesized from the fact that hyphal expansion is only observed in the root cortex.
We discuss five defense mechanisms. (1) The degradation of exogenous elicitors. The host’s weak defense response may be due to the degradation of the exogenous elicitor chitin, or the prevention of release of an endogenous inductor from the plant cell wall. (2) The inactivation of defense signal molecules. Some defense signal molecules such as hydrogen peroxidase, salicylic acid (SA), and jasmonic acid (JA), are inactivated in host plants. This helps to avoid the turn-on of defense-related genes and facilitate mycorrhizal formation. (3) The regulation of plant hormones and plant photosynthates. Plant hormone levels and plant photosynthate metabolism both change during AM colonization. These mechanisms need further exploration. (4) Changes in levels of phosphorous (P), and (iso)flavonoids. High P levels can induce some defense genes to express hydrogen peroxidase, chitinase, and glucanase. These gene products can repress colonization by AM fungi. The plant defense response regulatory effect for different (iso)flavonoids varies, and their levels are regulated by P. (5) The suppressed expression of symbiotic genes. Some symbiosis-related genes inhibit plant defense responses, but it is still unclear which mechanisms underlie gene regulation. We provide here a theoretical basis for research into AM symbiosis that may promote study of host plant resistance and the mechanisms of symbiosis formation.
We provide a deeper insight into the signal transduction pathways of mycorrhization that will aid understanding and analysis of plant defense mechanisms in the AM context. The on-going development of genome sequencing technology will contribute greatly to the detailed study of symbiosis-related genes, and pathogenesis-related protein genes. These related genes may be induced to express corresponding proteins, be repressed, postpone expression or even shutdown, or both may work together to form symbioses. Elucidation of these features will help us understand the roles that plant defenses play in mycorrhizal formation; providing an unprecedented opportunity for research into mycorrhizal molecular biology and the interaction of symbiotic partners, and allowing the underlying mechanisms to be gradually uncovered.  相似文献   

7.
The symbiosis between land plants and arbuscular mycorrhizal fungi (AMF) is one of the most widespread and ancient mutualisms on the planet. However, relatively little is known about the evolution of these symbiotic plant–fungal interactions in natural communities. In this study, we investigated the symbiotic AMF communities of populations of the native plant species Pilea pumila (Urticaceae) with varying histories of coexistence with a nonmycorrhizal invasive species, Alliaria petiolata (Brassicaceae), known to affect mycorrhizal communities. We found that native populations of P. pumila with a long history of coexistence with the invasive species developed more diverse symbiotic AMF communities. This effect was strongest when A. petiolata plants were actively growing with the natives, and in soils with the longest history of A. petiolata growth. These results suggest that despite the ancient and widespread nature of the plant–AMF symbiosis, the plant traits responsible for symbiotic preferences can, nevertheless, evolve rapidly in response to environmental changes.  相似文献   

8.
A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.  相似文献   

9.
Cereal mycorrhiza: an ancient symbiosis in modern agriculture   总被引:2,自引:0,他引:2  
The majority of terrestrial plants live in association with symbiotic fungi that facilitate mineral nutrient uptake. The oldest and most prevalent of these associations are the arbuscular mycorrhizal (AM) symbioses that first evolved approximately 400 million years ago, coinciding with the appearance of the first land plants. Crop domestication, in comparison, is a relatively recent event, beginning approximately 10000 years ago. How has the dramatic change from wild to cultivated ecosystems impacted AM associations, and do these ancient symbioses potentially have a role in modern agriculture? Here, we review recent advances in AM research and the use of breeding approaches to generate new crop varieties that enhance the agronomic potential of AM associations.  相似文献   

10.
In recent years, outstanding molecular approaches have been used to investigate genes and functions involved in plant-microbe endosymbioses. In this review, we outline the use of proteomic analysis, based on two-dimensional electrophoresis and mass spectrometry, to characterize symbiosis-related proteins. During the last decade, proteomics succeeded in identifying about 400 proteins associated with the development and functioning of both mycorrhizal and rhizobial symbioses. Further progress in prefractionation procedures is expected to allow the detection of symbiotic proteins showing low abundance or being present in certain cell compartments.  相似文献   

11.
Recent data on the plant control of early stages of mutually beneficial (mutualistic) symbioses of legumes, the mechanisms of perception and transmission of the microsymbiont’s molecular signals in the macrosymbiont’s cells, and induction of the genetic programs of the development of symbiotic compartments and organs of the plant are summarized. It is demonstrated that the genetic system of the plant controlling the development of nitrogen-fixing symbiosis of legumes (symbiotic root nodules), which emerged 70–80 Ma ago, has undoubtedly evolved on the basis of the genetic system controlling the development of the symbiosis with arbuscular mycorrhizal fungi (which emerged 400–500 Ma ago). Interactions between genes and between gene products, as well as exchange of molecular signals, form the basis of mutually beneficial (mutualistic) plant-bacterium interactions. Even in the case of a highly specific nitrogen-fixing symbiosis of legumes (symbiotic nodules), the receptors perceiving the signal from root-nodule bacteria may function in different ways. The development of arbuscular mycorrhiza and nitrogen-fixing symbiosis in legumes is a multistep process involving hundreds of genes of both the macro- and microsymbionts. For the symbioses to develop successfully, these genes should act in a coordinated way in the newly formed superorganismal system. Further studies are necessary to shed light onto the complexity of the plant genetic control of the development of mutualistic symbioses in legumes and provide information required for improving their functions in adaptive plant-breeding systems.  相似文献   

12.
The molecular research into two types of beneficial plant-microbe symbioses is reviewed: nutritional (with N(2)-fixing bacteria or mycorrhizal fungi) and defensive (with endo- and epiphytic microbes suppressing pathogens and phytophagans). These symbioses are based on the signaling interactions that result in the development of novel tissue/cellular structures and of extended metabolic capacities in the partners, which greatly improve the adaptive potential of plants due to a decrease in their sensitivity to biotic and abiotic stresses. The molecular, genetic and ecological knowledge on plant-microbe interactions provides a strategy for the organization of sustainable crop production based on substituting the agrochemicals (mineral fertilizers, pesticides) by microbial inoculants. An improvement of plant-microbe symbioses should involve the coordinated modifications in the partners' genotypes resulting in highly complementary combinations. These modifications should be based on the broad utilization of genetic resources from natural symbiotic systems aimed at: (i) increased competitiveness of the introduced (effective) with respect to local (ineffective) microbial strains, and (ii) overcoming the limiting steps in the metabolic machineries of the symbiotic systems.  相似文献   

13.
Zhu H  Riely BK  Burns NJ  Ané JM 《Genetics》2006,172(4):2491-2499
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.  相似文献   

14.
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.  相似文献   

15.
The function of the ectomycorrhizal mutualism depends on the ability of the fungal symbionts to take up nutrients (particularly nitrogen) available in inorganic and/or organic form in the soil and to translocate them (or their metabolites) to the symbiotic roots. A better understanding of the molecular mechanisms underlying nutrient exchanges between fungus and plant at the symbiotic interface is necessary to fully understand the function of the mycorrhizal symbioses. The present review reports the characterization of several genes putatively involved in nitrogen uptake and transfer in the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. Study of this model system will further clarify the symbiotic nutrient exchange which plays a major role in plant nutrition as well as in resistance of plants against pathogens, heavy metals, drought stress, etc. Ultimately, ecological balance is maintained and/or improved with the help of symbiotic associations, and therefore, warrant further understanding.  相似文献   

16.
We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5′- and 3′-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by ‘electronic northern’ representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most studies have been limited in scope to recording organism occurrences and identities, as determined from morphological characters and (mainly) ribosomal sequence markers. In order to overcome these restrictions and circumvent the shortcomings of culture- and phylogeny-based approaches, we propose a shift toward plant and fungal protein-encoding genes as more immediate indicators of mycorrhizal contributions to ecological processes. A number of candidate target genes, involved in the uptake of phosphorus and nitrogen, carbon cycling, and overall metabolic activity, are proposed. We discuss the advantages and disadvantages of future protein-encoding gene marker and current (phylo-) taxonomic approaches for studying the impact of AM fungi on plant growth and ecosystem functioning. Approaches based on protein-encoding genes are expected to open opportunities to advance the mechanistic understanding of ecological roles of mycorrhizas in natural and managed ecosystems.  相似文献   

18.
Beneficial plant–microbe symbioses are based on the integration of genetic material from diverse organisms resulting in formation of superorganism genetic systems. Analysis of their functions and evolution requires the establishment of a new biological discipline, proposed to be called symbiogenetics, which provides a basis for fundamental and applied research of the genetic control over different (symbiotic and biocenotic) biotic interactions. In ecology and agrobiology, the approaches of symbiogenetics are indispensable for optimising the interactions between the plants and the beneficial microbes to be used in ecosystem management and in sustainable crop production in which hazardous fertilisers and pesticides should be replaced by environmentally friendly microbial inoculants.  相似文献   

19.
20.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号