首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Tryptophanase, which has the very strict stereospecificity to L-tryptophan under ordinary condition, becomes active to D-tryptophan in highly concentrated diammoniumhydrogen phosphate solution. The reaction process of D-tryptophan degradation is studied in terms of kinetics. Diammoniumhydrogen phosphate acts on tryptophanase as activator below 3.1 M, and as noncompetitive inhibitor over it. Additionally, the pathway of the reaction is provided on the basis of kinetic parameters.Abbreviations TPase tryptophanase - L-Trp L-tryptophan - D-Trp D-tryptophan - DAP diammoniumhydrogen phosphate - PLP pyridoxal 5-phosphate  相似文献   

2.
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin.  相似文献   

3.
D-Tyr-tRNATyr deacylase cleaves the ester bond between a tRNA molecule and a D-amino acid. In Escherichia coli, inactivation of the gene (dtd) encoding this deacylase increases the toxicity of several D-amino acids including D-tyrosine, D-tryptophan, and D-aspartic acid. Here, we demonstrate that, in a Deltadtd cell grown in the presence of 2.4 mm D-tyrosine, approximately 40% of the total tRNATyr pool is converted into D-Tyr-tRNATyr. No D-Tyr-tRNATyr is observed in dtd+ cells. In addition, we observe that overproduction of tRNATyr, tRNATrp, or tRNAAsp protects a Deltadtd mutant strain against the toxic effect of D-tyrosine, D-tryptophan, or D-aspartic acid, respectively. In the case of D-tyrosine, we show that the protection is accounted for by an increase in the concentration of L-Tyr-tRNATyr proportional to that of overproduced tRNATyr. Altogether, these results indicate that, by accumulating in vivo, high amounts of D-Tyr-tRNATyr cause a starvation for L-Tyr-tRNATyr. The deacylase prevents the starvation by hydrolyzing D-Tyr-tRNATyr. Overproduction of tRNATyr also relieves the starvation by increasing the amount of cellular L-Tyr-tRNATyr available for translation.  相似文献   

4.
L-tryptophan is a very important precursor of niacin in mammals. Food preparation in which proteins are exposed to an alkali and/or high temperature for a long period generate appreciable amounts of D-amino acids from racemization. The efficiency of D-tryptophan as niacin was thus investigated by using weanling rats. The availability of D-tryptophan was almost the same as that in L-tryptophan as the precursor of niacin and was 1/6 as active as niacin.  相似文献   

5.
Glutamic acid 49 of the alpha subunit of tryptophan synthase from Escherichia coli is an essential residue since 19 mutant proteins substituted at position 49 were found previously to be inactive. Our present findings that five mutants of the alpha subunit, substituted with Asp, Lys, Ala, Phe, or Gly at position 49, bind a substrate analog normally are further evidence that glutamic acid 49 is a catalytic base. Ligands of the alpha subunit also have similar effects on site-site interactions between the beta subunit and the wild type or mutant alpha subunits. These effects include inhibition of the activity of the beta subunit, reduction of the dissociation constant for D-tryptophan, and increase of the equilibrium concentration of a quinonoid intermediate formed with L-tryptophan.  相似文献   

6.
R Hadar  A Slonim    J Kuhn 《Journal of bacteriology》1976,125(3):1096-1104
Mutants of Escherichia coli K-12 that require L-tryptophan (trp) are normally unable to utilize D-tryptophan to fulfill their requirement. However, secondary mutations (dadR) that confer this ability can be isolated. In such strains two distinct enzymes are found to be produced at high levels: D-amino acid oxidase (EC 1.4.3.3) and D-tryptophan oxidase. A convenient assay procedure for D-tryptophan oxidase is described. The two enzymes could be distinguished on the basis of their sensitivity to inhibition by L-phenylalanine and L-tyrosine. Strains that were trp dadR could not grow with D-tryptophan in the presence of L-phenylalanine, but further mutations, Fyo, could be isolated that allowed growth under these conditions. Some of them were characterized by further increases in the level of D-tryptophan oxidase activity and a sharp decrease in D-amino acid oxidase. These kinds of Fyo mutations lay in or near the dadR gene. The substrate specificity of the two enzymes toward a large number of compounds was examined. The transamination of aromatic keto acids was investigated. In the wild-type strain only a single enzyme, transaminase A (EC 2.6.1.5), was found, and it was irreversibly activated when subjected to elevated temperatures. The present state of our knowledge on D-amino acid utilization in E. coli is summarized.  相似文献   

7.
Summary Tryptophanase is and is perfectly inert to D-tryptophan under ordinary conditions. However, activity that can degrade D-tryptophan into indole is observed when tryptophanase is in highly concentrated diammoniumhydrogen phosphate solution. The reaction has been so far unknown in tryptophanase metabolic pathways. Here we report the characteristic of the reaction. We also discuss its significance in relation to selection of an amino acid optical isomer from a racemic mixture.Abbreviations AP diammoniumhydrogen phosphate - TPase tryptophanase - L-Trp L-tryptophan - D-Trp D-tryptophan - PLP pyridoxal 5-phosphate  相似文献   

8.
IAA biosynthesis in Alaska peas is shown to be plastid localized.D-tryptophan is a much better substrate than is L-tryptophan,and IAA production is dependent on a keto acid. In line withthis, a plastid localized D-tryptophan aminotransferase hasbeen found and purified 1,500 fold. The enzyme has no activitywith L-tryptophan and prefers pyruvic or oxaloacetic acid asan amino group acceptor. Activities are much higher in darkthan in light grown tissues. Some possible physiological ramificationsare discussed. (Received May 15, 1989; Accepted July 25, 1989)  相似文献   

9.
The intake of six sweeteners was recorded together with theireffects on the impulse activity of the chorda tympani propernerve during their application to the tongue. The sweetenerswere: acetosulfam, aspartame, D-tryptophan, glycine, xylitoland thaumatin. They were used at human equi-sweet concentrations.In all species, D-tryptophan was strongly preferred and gavea significant response, while aspartame and thaumatin gave neithera significant behavioral nor a significant neural response.Acetosulfam, glycine and xylitol elicited neural responses,but their behavioral effects differed from a rejection in somespecies to a preference in others. Miraculin, which has a sweetnessinducing effect in man, showed this effect only in the platyrrhineanspecies and not in the prosimian.  相似文献   

10.
Abstract— Intraperitoneal administration of both D- or L-tryptophan elevated the levels of serotonin and 5-hydroxyindoleacetic acid in the brains of hypophysectomized and intact rats. In intact rats, the increase in brain 5-hydroxyindoles was slower after D-tryptophan than after L-tryptophan. Similarly, brain tryptophan rose more slowly after administration of D-tryptophan. The uptake of L-tryptophan from blood into brain was at a rate about one-third that of 3H2O. D-tryptophan uptake was at 1/25 that of 3H2O. Brain and liver tryptophan aminotransferase activities were stereospecific for the L-isomer and no evidence could be found for a tryptophan racemase in brain. Evisceration prevented the increase in brain 5-hydroxyindoles following peripheral administration of D-tryptophan administration but not that after L-tryptophan. The serotonin ratios between the two brain regions examined remained constant following administration of either D- or L-tryptophan. On the basis of these results we concluded that the increase in brain 5-hydroxyindoles following administration of L-tryptophan was not dependent upon stress-induced changes in pituitary hormones and that the elevations after D-tryptophan were dependent upon its prior conversion to L-tryptophan via peripheral deamination and subsequent transamination.  相似文献   

11.
We showed that the ability of Escherichia coli K12 tryptophan auxotrophs to utilize D-tryptophan as a substitute for L-tryptophan may result from two types of mutations. The first type consisted in changes in the dadR regulatory site of the dad operon increasing the synthesis of D-amino acid dehydrogenase. The mutations of the second type mapped within the dad A structural gene. They changed the apparent substrate specificity of D-amino acid dehydrogenase. We suppose that the change may be due to an altered enzyme structure which make it more accessible to D-tryptophan.  相似文献   

12.
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.  相似文献   

13.
In chemotactic studies employing countercurrent separation the nematode aenorhabditis elegans was found to avoid D-tryptophan with a threshold in the range 10(-4) to 10(-3) M. There was no response to L-tryptophan up to 10(-2) M although it appeared to partially inhibit the response to D-tryptophan.  相似文献   

14.
Renal clearances of D-tryptophan and of L-tryptophan by rats were compared. Both D- and L-tryptophan were reabsorbed by the rat kidney tubules very efficiently. Compared to the rapid excretion of D-tryptophan by the chick, the good retention of this isomer by the rat kidney might be responsible for its efficient utilization by rats.  相似文献   

15.
Claviceps purpurpea PRL 1980 converts L-tryptophan to N-acetyl-L-trytophan. There is little acetylation of D-tryptophan. Added N-acetyl-L -trypotophan. has no effect on alkaloid production. L-Tyrosine addition results in production of a compound which is probably N-acetyltyrosine and also causes accumulation of 4-γ,γ-dimethylally-tryptophan.  相似文献   

16.
Stereospecificity of hepatic L-tryptophan 2,3-dioxygenase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Tryptophan 2,3-dioxygenase [L-tryptophan--oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11] has been reported to act solely on the L-isomer of tryptophan. However, by using a sensitive assay method with D- and L-[ring-2-14C]tryptophan and improved assay conditions, we were able to demonstrate that both the D- and L-stereoisomers of tryptophan were cleaved by the supernatant fraction (30000 g, 30 min) of liver homogenates of several species of mammals, including rat, mouse, rabbit and human. The ratio of activities toward D- and L-tryptophan was species variable, the highest (0.67) in ox liver and the lowest (0.07) in rat liver, the latter being hitherto exclusively used for the study of hepatic tryptophan 2,3-dioxygenase. In the supernatant fraction from mouse liver, the ratio was 0.23 but the specific activity with D-tryptophan was by far the highest of all the species tested. To identify the D-tryptophan cleaving enzyme activity, the enzyme was purified from mouse liver to apparent homogeneity. The specific activities toward D- and L-tryptophan showed a parallel rise with each purification step. The electrophoretically homogeneous protein had specific activities of 0.55 and 2.13 mumol/min per mg of protein at 25 degrees C toward D- and L-tryptophan, respectively. Additional evidence from heat treatment, inhibition and kinetic studies indicated that the same active site of a single enzyme was responsible for both activities. The molecular weight (150000), subunit structure (alpha 2 beta 2) and haem content (1.95 mol/mol) of the purified enzyme from mouse liver were similar to those of rat liver tryptophan 2,3-dioxygenase. The assay conditions employed in the previous studies on the stereospecificity of hepatic tryptophan 2,3-dioxygenase were apparently inadequate for determination of the D-tryptophan cleaving activity. Under the assay conditions in the present study, the purified enzyme from rat liver also acted on D-tryptophan, whereas the pseudomonad enzyme was strictly specific for the L-isomer.  相似文献   

17.
Using the whole cell patch clamp technique, we measured changesin outward K+ currents of gerbil taste cells in response todifferent kinds of sweeteners. Outward K+ currents of the tastecell induced by depolarizing pulses were suppressed by sweetstimuli such as 10 mM Na-saccharin. The membrane-permeable analogof cAMP, cpt-cAMP, also decreased outward K+ currents. On theother hand, the K+ currents were enhanced by amino acid sweetenerssuch as 10 mM D-tryptophan. The outward K+ current was enhancedby external application of Ca2+-transporting ionophore, 5 µMionomycin, and intracellular application of 5 µM inositol-1,4,5-trisphosphate(IP3). The outward K+ currents were no longer suppressed by10 mM Na-saccharin containing 20 µM gurmarin, but werestill enhanced by 10 mM D-tryptophan containing 20 µMgurmarin. These results suggest that sweet taste transductionfor one group of sweeteners such as Na-saccharin in gerbilsis concerned with an increase of the intracellular cAMP level,and that the transduction for the other group of sweetenerssuch as D-tryptophan is concerned with an increase of the intracellularIP3 level which releases Ca2+ from the internal stores. Chem.Senses 22: 163–169, 1997.  相似文献   

18.
N-malonyl-D-tryptophan (MT) and D-tryptophan added to the medium instead of auxin stimulated growth of soybean and tomato cell and tissue cultures. Effects of 50–100 μmol 1-1 MT and 100 –300 μmol 1-1 D-tryptophan were equal to the effect of 3–10 μmol 1-1 IAA. Soybean cells grown in the presence of 100 μmol 1-1 MT contained 125–170 ng IAA per 1 g fresh mass (as determined by spectrofluorimetric indole-α-pyrone method), whereas the cells grown in the presence of NAA 10. 7 μmol 1-1 contained 50 –60 ng IAA and the cells grown in the absence of auxin failed to show endogenous IAA. MT as proposed can be hydrolyzed by plant cells with liberation of D-tryptophan, which in turn can be used in IAA synthesis. It is proposed that MT is a possible source of endogenous auxin in plants.  相似文献   

19.
N-malonyltransferases from peanut   总被引:5,自引:0,他引:5  
Three distinct N-malonyltransferases were purified from peanut seedlings, accepting either anthranilic acid, D-tryptophan, or 3,4-dichloroaniline, respectively, as a substrate. Partially purified malonyl-CoA:D-tryptophan malonyltransferase also catalyzed the formation of the corresponding malonic acid conjugate when 1-aminocyclopropane-1-carboxylic acid was employed as a substrate. These N-malonyltransferases were clearly distinguished from several O-malonyltransferase activities also present in the same seedlings. N-Malonic acid conjugates have been previously isolated from peanut either as a natural constituent or after feeding with xenobiotics. By analogy to the results reported with cultured parsley cells, multiple malonyltransferases in peanut may have a role in vacuolar transport. Crude extracts of young peanut seedlings were incapable of hydrolyzing the respective N-malonic acid conjugates. However, dialyzed extracts of older plants released malonic acid from malonyl-1-aminocyclopropane-1-carboxylic acid but not from malonyl-3,4-dichloroaniline, suggesting that some N-malonic acid conjugates may be metabolized in plants which are approaching senescence.  相似文献   

20.
A new D-stereospecific amino acid amidase from Ochrobactrum anthropi   总被引:2,自引:0,他引:2  
A new D-stereospecific amino acid amidase has been partially purified from Ochrobactrum anthropi SCRC SV3, which had been isolated and selected from soil. The Mr of the enzyme was estimated to be about 38,000, and its isoelectric point was 5.3. The enzyme catalyzes the stereospecific hydrolysis of D-amino acid amide to yield D-amino acid and ammonia. The major substrates included D-phenylalanine amide, D-tyrosine amide, D-tryptophan amide, D-leucine amide, and D-alanine amide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号