首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it's been reported that women with premenstrual dysphoric disorder (PMDD) have increased negative mood, appetite (food cravings and food intake), alcohol intake and cognitive deficits premenstrually, few studies have examined these changes concurrently within the same group of women or compared to women without PMDD. Thus, to date, there is not a clear understanding of the full range of PMDD symptoms. The present study concurrently assessed mood and performance tasks in 29 normally cycling women (14 women who met DSM-IV criteria for PMDD and 15 women without PMDD). Women had a total of ten sessions: two practice sessions, 4 sessions during the follicular phase and 4 sessions during the late luteal phase of the menstrual cycle. Each session, participants completed mood and food-related questionnaires, a motor coordination task, performed various cognitive tasks and ate lunch. There was a significant increase in dysphoric mood during the luteal phase in women with PMDD compared to their follicular phase and compared to Control women. Further, during the luteal phase, women with PMDD showed impaired performance on the Immediate and Delayed Word Recall Task, the Immediate and Delayed Digit Recall Task and the Digit Symbol Substitution Test compared to Control women. Women with PMDD, but not Control women, also showed increased desire for food items high in fat during the luteal phase compared to the follicular phase and correspondingly, women with PMDD consumed more calories during the luteal phase (mostly derived from fat) compared to the follicular phase. In summary, women with PMDD experience dysphoric mood, a greater desire and actual intake of certain foods and show impaired cognitive performance during the luteal phase. An altered serotonergic system in women with PMDD may be the underlying mechanism for the observed symptoms; correspondingly, treatment with specific serotonin reuptake inhibitors (SSRIs) remains the preferred treatment at this time.  相似文献   

2.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00 h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6 h or 6000 lux for 3 h) was given either in the morning (AM light), 7 h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3 h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors' previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD.  相似文献   

3.
Women with premenstrual dysphoric disorder (PMDD) experience mood deterioration and altered circadian rhythms during the luteal phase (LP) of their menstrual cycles. Disturbed circadian rhythms may be involved in the development of clinical mood states, though this relationship is not fully characterized in PMDD. We therefore conducted an extensive chronobiological characterization of the melatonin rhythm in a small group of PMDD women and female controls. In this pilot study, participants included five women with PMDD and five age-matched controls with no evidence of menstrual-related mood disorders. Participants underwent two 24-hour laboratory visits, during the follicular phase (FP) and LP of the menstrual cycle, consisting of intensive physiological monitoring under “unmasked”, time-isolation conditions. Measures included visual analogue scale for mood, ovarian hormones, and 24-hour plasma melatonin. Mood significantly (P≤.03) worsened during LP in PMDD compared to FP and controls. Progesterone was significantly (P = .025) increased during LP compared to FP, with no between-group differences. Compared to controls, PMDD women had significantly (P<.05) decreased melatonin at circadian phases spanning the biological night during both menstrual phases and reduced amplitude of its circadian rhythm during LP. PMDD women also had reduced area under the curve of melatonin during LP compared to FP. PMDD women showed affected circadian melatonin rhythms, with reduced nocturnal secretion and amplitude during the symptomatic phase compared to controls. Despite our small sample size, these pilot findings support a role for disturbed circadian rhythms in affective disorders. Possible associations with disrupted serotonergic transmission are proposed.  相似文献   

4.
Circulating levels of the neuro-hypophysial nonapeptide oxytocin increase during sexual arousal and orgasm in both men and women. A few studies have evaluated the effect of the menstrual cycle on plasma oxytocin in normally cycling, sexually active, healthy fertile women using or not using contraceptive pills. In 20 ovulating women and 10 women taking an oral contraceptive (group 1 and group 2, respectively), sexual function, hormonal profile, and plasma oxytocin (OT) were evaluated throughout the menstrual cycle. In group 1, plasma OT was significantly lower during the luteal phase in comparison with both the follicular and ovulatory phases. Plasma oxytocin was significantly correlated with the lubrication domain of the Female Sexual Function Index (FSFI) during the luteal phase and showed a trend towards statistical significance during the follicular phase. In group 2, plasma OT did not show any significant fluctuation throughout the menstrual cycle, even though a significant correlation was evident with both the arousal and the lubrication domain of the FSFI during the assumption of the contraceptive pill. These findings suggest that plasma OT fluctuates throughout the menstrual cycle in normally cycling healthy fertile women with adequate sexual activity but not taking any oral contraceptive pill. Moreover, plasma OT levels significantly relates to the genital lubrication in both women taking and not taking oral contraceptive pill apparently confirming its role in peripheral activation of sexual function.  相似文献   

5.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00?h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6?h or 6000 lux for 3?h) was given either in the morning (AM light), 7?h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3?h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors’ previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6?h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. (Author correspondence: )  相似文献   

6.
The effects of menstrual cycle phase (early follicular vs. midluteal) and menstrual status (eumenorrhea vs. amenorrhea) on plasma arginine vasopressin (AVP), renin activity (PRA), and aldosterone (ALDO) were studied before and after 40 min of submaximal running (80% maximal O2 uptake). Eumenorrheic runners were studied in the early follicular and midluteal phases determined by urinary luteinizing hormone and progesterone and plasma estradiol and progesterone assays; amenorrheic runners were studied once. Menstrual phase was associated with no significant differences in preexercise plasma AVP or PRA, but ALDO levels were significantly higher during the midluteal phase than the early follicular phase. Plasma AVP and PRA were significantly elevated at 4 min after the 40-min run in the eumenorrheic runners during both menstrual phases and returned to preexercise levels by 40 min after exercise. Plasma ALDO responses at 4 and 40 min after exercise were higher in the midluteal phase than the early follicular phase. Menstrual status was associated with no significant differences in preexercise AVP or PRA; however, ALDO levels were significantly higher in the amenorrheic runners. After exercise, responses in the amenorrheic runners were comparable with the eumenorrheic runners during the early follicular phase. Thus, submaximal exercise elicits significant increases in plasma AVP and PRA independent of menstrual phase and status. However, plasma ALDO is significantly elevated during the midluteal phase, exercise results in a greater response during this menstrual phase, and amenorrheic runners have elevated resting levels of ALDO.  相似文献   

7.
Estrogen and progesterone interference with renal actions of arginine vasopressin (AVP) has been shown. Thus we hypothesized that women will have a higher water turnover than men and that the greatest difference will be during the luteal phase of the menstrual cycle. Seven men (32 +/- 3 yr) and six women (33 +/- 2 yr) drank 12 ml water/kg lean body mass on different days at 0800 and at 2000 following 10 h of fast and a standardized meal at 0600 and 1800. Women participated on days 4-11 and 19-25 of the menstrual cycle. Initial urine and plasma osmolalities and urine flow rates were similar in all experiments. The cumulative urine voided over 3 h following the morning drink was less in men (73 +/- 12% of the water load) compared with women in either the follicular (100 +/- 3%) or luteal phases (102 +/- 10%) of the menstrual cycle. Nighttime values (30-43% of the water load) were lower in all experiments and were not different between sexes or menstrual cycle phases. Plasma AVP was higher at night and may contribute to this diurnal response. The data are generally consistent with the stated hypothesis; however, possibly owing to the greatly reduced urine flow in both sexes at night, a difference between sexes was not observed at that time.  相似文献   

8.
《Chronobiology international》2013,30(7):1438-1453
Increased sensitivity to light-induced melatonin suppression characterizes some, but not all, patients with bipolar illness or seasonal affective disorder. The aim of this study was to test the hypothesis that patients with premenstrual dysphoric disorder (PMDD), categorized as a depressive disorder in Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), have altered sensitivity to 200 lux light during mid-follicular (MF) and late-luteal (LL) menstrual cycle phases compared with normal control (NC) women. As an extension of a pilot study in which the authors administered 500 lux to 8 PMDD and 5 NC subjects, in the present study the authors administered 200 lux to 10 PMDD and 13 NC subjects during MF and LL menstrual cycle phases. Subjects were admitted to the General Clinical Research Center (GCRC) in dim light (<50 lux) to dark (during sleep) conditions at 16:00?h where nurses inserted an intravenous catheter at 17:00?h and collected plasma samples for melatonin at 30-min intervals from 18:00 to 10:00?h, including between 00:00 and 01:00?h for baseline values, between 01:30 and 03:00?h during the 200 lux light exposure administered from 01:00 to 03:00?h, and at 03:30 and 04:00?h after the light exposure. Median % melatonin suppression was significantly greater in PMDD (30.8%) versus NC (?0.2%) women (p?=?.040), and was significantly greater in PMDD in the MF (30.8%) than in the LL (?0.15%) phase (p?=?.047). Additionally, in the LL (but not the MF) phase, % suppression after 200 lux light was significantly positively correlated with serum estradiol level (p ?=? .007) in PMDD patients, but not in NC subjects (p?>?.05). (Author correspondence: )  相似文献   

9.
To determine whether GnRH modifies prolactin (PRL) secretion in response to thyrotrophin-releasing hormone (TRH) in normal women, a group of eleven normal women, 23 to 40 years of age, was studied in the mid-follicular phase of the menstrual cycle. The PRL response to TRH was evaluated in serum under control conditions and after GnRH infusion. GnRH administration augmented basal PRL release and amplified TRH-induced PRL release. These results suggest that GnRH may be involved in PRL release, partly by increasing the sensitivity of the lactotrophs to TRH.  相似文献   

10.
The responses of plasma aldosterone (A) and plasma renin activity (PRA) to orthostatism have been evaluated in 47 women during the follicular and/or luteal phase of the menstrual cycle. Three postmenopausal women and 51 men were also studied for control. Fourteen cycling women and 11 men were studied on a low sodium diet (20 mEq/day) while the rest of the subjects were on normal sodium intake. In addition, 18 women (including those postmenopausal) and 17 men were studied after intravenous administration of 20 mg frusemide. The response of A to orthostatism in women during luteal phase on normal sodium diet with or without frusemide was much greater than in men or women during follicular phase (p less than 0.01) or menopuase (p less than 0.05). However, no differences between groups could be observed in A response while on a low sodium diet. PRA response was similar during follicular of luteal phase fo the cycle as well as in men either on low or normal sodium intake with or without frusemide.  相似文献   

11.
Neurokinin 3 receptor (NK3R) signaling has an integral role in the stimulated oxytocin (OT) and vasopressin (VP) release in response to hyperosmolarity and hypotension. Peripheral injections of cholecystokinin (CCK) receptor agonists for the CCK-A (sulfated CCK-8) and CCK-B (nonsulfated CCK-8) receptors elicit an OT release in rat. It is unknown whether NK3R contributes to this endocrine response. Freely behaving male rats were administered an intraventricular pretreatment of 250 or 500 pmol of SB-222200, a specific NK3R antagonist, or 0.15 M NaCl before an intraperitoneal or intravenous injection of CCK-8 (nonsulfated or sulfated) or 0.15 M NaCl. Blood samples were taken before intraventricular treatment and 15 min after intraperitoneal or intravenous injection, and plasma samples were assayed for OT and VP concentration. Intraperitoneal injection of both nonsulfated and sulfated CCK-8 significantly increased plasma OT levels and had no effect on plasma VP levels. Intravenous injection of sulfated CCK-8 stimulated an increase in plasma OT levels and did not alter plasma VP levels. However, intravenous injection of nonsulfated CCK-8 stimulated a significant increase in plasma levels of both OT and VP. No other studies have demonstrated CCK-8-stimulated release of VP in rat. NK3R antagonist did not alter baseline levels of either hormone. However, pretreatment of NK3R antagonist significantly blocked the CCK-stimulated release of OT in all CCK treatment groups and blocked VP release in response to intravenous injection of nonsulfated CCK-8. Therefore, central NK3R signaling is required for OT and VP release in response to CCK administration.  相似文献   

12.
We tested the physiological reliability of plasma renin activity (PRA) and plasma concentrations of arginine vasopressin (P[AVP]), aldosterone (P[ALD]), and atrial natriuretic peptide (P[ANP]) in the early follicular phase and midluteal phases over the course of two menstrual cycles (n = 9 women, ages 25 +/- 1 yr). The reliability (Cronbach's alpha >/=0.80) of these hormones within a given phase of the cycle was tested 1) at rest, 2) after 2.5 h of dehydrating exercise, and 3) during a rehydration period. The mean hormone concentrations were similar within both the early follicular and midluteal phase tests; and the mean concentrations of P[ALD] and PRA for the three test conditions were significantly greater during the midluteal compared with the early follicular phase. Although Cronbach's alpha for resting and recovery P[ANP] were high (0.80 and 0.87, respectively), the resting and rehydration values for P[AVP], P[ALD], and PRA were variable between trials for the follicular (alpha from 0.49 to 0.55) and the luteal phase (alpha from 0.25 to 0. 66). Physiological reliability was better after dehydration for P[AVP] and PRA but remained low for P[ALD]. Although resting and recovery P[AVP], P[ALD], and PRA were not consistent within a given menstrual phase, the differences in the concentrations of these hormones between the different menstrual phases far exceeded the variability within the phases, indicating that the low within-phase reliability does not prevent the detection of menstrual phase-related differences in these hormonal variables.  相似文献   

13.
Stimulant abuse continues to be a growing problem among women. Over the last 10-15 years, an increasing number of studies have focused on factors that may be implicated in stimulant abuse in women as compared to men, including the role of hormonal fluctuations across the menstrual cycle. Numerous preclinical studies have documented that female rodents are more sensitive than male rodents to the behavioral effects of stimulant administration and the hormone estradiol is involved in the enhanced response to stimulants observed in females. In contrast, fewer studies have been conducted in humans and non-human primates addressing the role of sex and gonadal hormones on the effects of cocaine. This review paper presents a recent update on data collected in our Human Cocaine Challenge Laboratory and our Non-human Primate Laboratory, including analysis of cocaine pharmacokinetics, sex differences, the menstrual cycle, and the role of progesterone in modulating the response to cocaine. Our studies indicate that there is minimal evidence that the response to intranasal cocaine varies across the menstrual cycle or between men and women. In contrast, the response to smoked cocaine is greater in the follicular phase than the luteal phase and differences between men and women generally only emerge when men are compared to women in the luteal phase. In terms of potential hormonal mechanisms for these differences, the hormone progesterone attenuates the subjective response to cocaine. With respect to cocaine self-administration, there are minimal changes across the menstrual cycle in both humans and non-human primates. Thus, there is converging evidence across a range of species that the behavioral effects of cocaine (1) differ between males and females, (2) differ in relation to hormonal fluctuations, (3) can be attenuated by progesterone (at least in females), and (4) do not appear to be related to differences in cocaine pharmacokinetics.  相似文献   

14.
Twenty days after bilateral adrenalectomy (ADX) or immediately after the last of three 6-h long immobilization periods, the levels of hypothalamic and neurohypophyseal L-[35S]Cys-labeled arginine vasopressin (AVP), oxytocin (OT), and somatostatin-14 (SRIF) (only stressed animals) were measured simultaneously in male Wistar rats, after third ventricular administration of the labeled precursor, via guide-cannulae. The acetic acid-extracted labeled peptide fractions were purified by two sequential HPLC steps. After a 4 h period of labeling, only L-[35S]Cys-AVP was selectively increased in the hypothalami of ADX-ized rats, compared to the sham-operated animals, possibly reflecting a significant activation of the paraventricular parvocellular (PVC) AVP/corticotropin-releasing factor (CRF) neurons. The increased accumulation of neurohypophyseal L-[35S]Cys-labeled AVP and OT in these animals, without changes in the endogenous levels of these peptides, as measured by UV absorbance, also suggests a moderate activation of the magnocellular (MGC) AVP and OT neurons, as a consequence of adrenal insufficiency. In response to immobilization stress, levels of L-[35S]Cys-OT were selectively increased in the hypothalami and corresponding neurohypophyses, 2 h and 4 h after receiving the label, concomitantly with a statistically significant reduction in the stores of OT in the neural lobes. AVP and SRJF biosynthesis remained unaffected by immobilization; the neurohypophyseal AVP stores likewise remained unchanged. These observations suggest the selective activation of MGC-OT neurons in response to chronic immobilization stress. Selective increases in hypothalamic L-[35S]Cys-AVP in ADX-ized rats, and in hypothalamic L-[35S]Cys-OT in chronically stress-immobilized rats, are presented as a measure of PVC-AVP/CRF and MGC-OT neuronal activation, respectively.  相似文献   

15.
Marked stimulation of glucagon release and modest stimulation of insulin release were observed during in situ perfusion of the rat pancreas with AVP or OT. Glucagon release in response to AVP or OT (200 pg/ml) gradually increased over a 45 min perfusion period reaching maxima of 500% and 300% of the pre-stimulatory levels, respectively. Insulin release transiently increased by 100%. In each case release rates returned to control values immediately after withdrawal of the peptides. Total glucagon release was concentration dependent and linear from 20 pg to 20 ng AVP or OT/ml (r greater than .97). Pancreatic response to DDAVP perfused at 20 ng/ml was virtually indistinguishable from that induced by AVP at 200 pg/ml. This demonstration of a glucagonotrophic action of the neurohypophysial hormones in the in situ perfused rat pancreas confirms earlier studies using isolated islets and bolus IV injection.  相似文献   

16.
Vasoactive intestinal polypeptide (VIP) was infused into the aorta of pentobarbitone-anesthetized rats (n = 12) in stepwise increasing doses of 0.001 to 10 micrograms/rat at rates varying from 0.3 pmol/min/kg to 3000 pmol/min/kg over 3 min. Blood was withdrawn from the vena cava inferior for the measurement of oxytocin (OT) and vasopressin (AVP) by RIA. The loss of blood was compensated for by infusion of isotonic saline (0.9% NaCl with 0.5% human serum albumin). Control rats received this solution only (n = 11). VIP infusions resulted in a dose-dependent increase in plasma OT which was significantly greater than the slight rise observed in the controls. The difference from controls was significant at infusion rates of 3 pmol/min/kg and more. Plasma AVP, on the other hand, did not rise in response to VIP infusions until the infusion rate was increased to 300 and 3000 pmol/min/kg. At these infusion rates, the increments in AVP were much smaller than those of OT, the levels during the highest infusion rates rising to 8.6 +/- 2.8 and 27.2 +/- 4.8 microU/ml, respectively (log normal means). The preferential release of OT in response to exogenous VIP in rats differs from the response in cats where intracarotid administration of VIP resulted in the release of proportionately more AVP than OT. Immunoreactive VIP is found in the hypothalamo-neurohypophyseal system of rats in close proximity of some of the magnocellular neurons as well as within the nerve terminals. This, together with our data, suggests that endogenous VIP may participate in the release mechanism for OT in rats.  相似文献   

17.
Women living at low altitudes or acclimatized to high altitudes have greater effective ventilation in the luteal (L) compared with follicular (F) menstrual cycle phase and compared with men. We hypothesized that ventilatory acclimatization to high altitude would occur more quickly and to a greater degree in 1) women in their L compared with women in their F menstrual cycle phase, and 2) in women compared with men. Studies were conducted on 22 eumenorrheic, unacclimatized, sea-level (SL) residents. Indexes of ventilatory acclimatization [resting ventilatory parameters, hypoxic ventilatory response, hypercapnic ventilatory response (HCVR)] were measured in 14 women in the F phase and in 8 other women in the L phase of their menstrual cycle, both at SL and again during a 12-day residence at 4,300 m. At SL only, ventilatory studies were also completed in both menstrual cycle phases in 12 subjects (i.e., within-subject comparison). In these subjects, SL alveolar ventilation (expressed as end-tidal PCO(2)) was greater in the L vs. F phase. Yet the comparison between L- and F-phase groups found similar levels of resting end-tidal PCO(2), hypoxic ventilatory response parameter A, HCVR slope, and HCVR parameter B, both at SL and 4,300 m. Moreover, these indexes of ventilatory acclimatization were not significantly different from those previously measured in men. Thus female lowlanders rapidly ascending to 4,300 m in either the L or F menstrual cycle phase have similar levels of alveolar ventilation and a time course for ventilatory acclimatization that is nearly identical to that reported in male lowlanders.  相似文献   

18.
In Syrian hamsters (Mesocricetus autatus) arginine-vasopressin (AVP) within the medial preoptic-anterior hypothalamus (MPOA-AH) plays a critical role in the control of a hormone-dependent behavior called flank marking. The present study investigated whether ovarian hormones influence flank marking by altering the response of the MPOA-AH to AVP. The amount of flank marking stimulated by microinjection of AVP (9 μM in 200 nl saline) into the MPOA-AH varied significantly over the 4 days of the estrous cycle with the lowest levels of flank marking observed on estrus. A second experiment demonstrated that administration of progesterone significantly reduced AVP-stimulated flank marking in estradiol-treated ovariectomized hamsters. These data support the hypothesis that the changing levels of estradiol and progesterone during the estrous cycle influence flank marking by altering the sensitivity or response of the MPOA-AH to AVP.  相似文献   

19.
Synthetic GnRH, at a dose of 100 mcg, was injected intravenously into 12 healthy, single, regulary menstruating women in order to test the capacity of the pituitary to release LH and FSH in response to the administration of the decapeptide. A total of 12 tests was performed during different stages of the menstrual cycle, i.e., on D 3-4, D 13-16 and D 21-29 of the cycle. Following GnRH administration, there was a rapid increase in serum levels of LH. Although there was a pronounced variation of responses in the course of the menstrual cycle, the maximum response was observed 30 to 40 min., after injection. The mean net increases of LH (M +/- SE mIU/ml) were in the following order: 118 +/- 22 in the preovulatory phase, 63 +/- 12 in the midluteal phase, and 35 +/- 7 in the early follicular phase. A concomitant but much smaller rise in serum levels of FSH was observed. These data indicate that the sensitivity of pituitary gonadotrophs to GnRH is preferentially increased during the preovulatory phase of the cycle, thus lending further support to already published data which demonstrated increased pituitary sensitivity to GnRH toward midcycle.  相似文献   

20.
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, μ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号