首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied the binding of azide ion to ferrihemoglobin in various water/ethylene glycol mixtures. The results show that the thermodynamic parameters are strongly dependent on the mole fraction of ethylene glycol. This dependence has been explained in terms of solvent effects and the transition between two forms of ferrihemoglobin stabilized in water and ethylene glycol.  相似文献   

2.
3.
This report describes the first successful transfer and complete expression of clustered mycobacterial genes controlling a biosynthetic pathway (carotenogenesis) in a homologous system. A genomic library of pigmented Mycobacterium aurum A+ (yellow-orange) DNA was constructed in shuttle vector pHLD-69. The colourless mutant A11 and the brick-red mutant NgR9 derived from M. aurum A+ were electroporated with the plasmid library. Among the transformants, colonies different in colour from the recipient mutants were detected, and were cloned. One of the clones from the transformed A11 mutant had a yellow-orange phenotype, and was designated A11T; one of the clones from the NgR9 (brick-red) mutant had a yellow-orange phenotype and was designated NgR9T. The carotenoid pigments from the A11T and NgR9T clones were analyzed and in both the end product of carotenogenesis in M. aurum (leprotene) was detected. A11T and NgR9T harboured the same recombinant plasmid (Cl) containing a 11-kb M. aurum fragment. pCl was used to transform the colourless Mycobacterium smegmatis MC2-155 strain. All the transformants were pigmented. A colony (MC2-T) was arbitrarily chosen and leprotene was detected. It was therefore concluded that M. aurum genes involved in carotenogenesis had been cloned, and were expressed not only in M. aurum mutants, but also in M. smegmatis.  相似文献   

4.
目的 构建表达结核分枝杆菌Rv1776c基因的重组耻垢分支杆菌,并鉴定该基因在重组耻垢分支杆菌中的活性。方法 采用PCR技术克隆结核分枝杆菌Rv1776c基因,构建大肠埃希菌‒分支杆菌穿梭表达质粒pMV-Rv1776c,通过酶切和测序鉴定其正确性,用电穿孔法将重组质粒转染到耻垢分支杆菌mc2155中。以SDS-PAGE及Western blot检测证实Rv1776c蛋白在重组耻垢分支杆菌内的表达。结果 重组耻垢分支杆菌构建成功,生长曲线说明重组质粒不会影响耻垢分支杆菌的体外生长;SDS-PAGE及Western blot检测证实Rv1776c在耻垢分枝杆菌内表达出相对分子量约56 kD的Rv1776c蛋白。结论 成功构建了Rv1776c基因的穿梭质粒pMV-Rv1776c,且该质粒在耻垢分枝杆菌内具有生物活性,为进一步研究其表达产物的功能提供基础。  相似文献   

5.
目的:构建结核分枝杆菌eis基因的穿梭表达载体,鉴定其在重组耻垢分枝杆菌中的生物活性。方法:采用PCR技术克隆结核分枝杆菌eis基因,构建大肠杆菌-分枝杆菌穿梭表达载体pMV-eis,经酶切和测序鉴定其正确性,用电穿孔法将重组质粒转化至耻垢分枝杆菌mc2155中,采用SDS-PAGE和Western blot检测eis基因在耻垢分枝杆菌中的表达。结果:成功构建结核杆菌eis基因穿梭表达载体pMV-eis;生长曲线说明重组质粒不会影响耻垢分枝杆菌的体外生长;SDS-PAGE 和Western blot检测证实eis在耻垢分枝杆菌中可表达出相对分子量约42kDa的Eis蛋白。结论:成功构建了eis基因穿梭表达质粒pMV-eis,且该重组质粒在耻垢分枝杆菌中具有生物活性,为下一步研究表达产物Eis的功能奠定了一定基础。  相似文献   

6.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

7.
A 9.5-kb section of DNA called region of deletion 1 (RD1) is present in virulent Mycobacterium tuberculosis strains but is deleted in all attenuated Mycobacterium bovis BCG vaccine strains. This region codes for at least nine genes. Some or all RD1 gene products may be involved in virulence and pathogenesis, and at least two, ESAT-6 and CFP-10, represent potent T- and B-cell antigens. In order to produce the entire set of RD1 proteins with their natural posttranslational modifications, a robust expression system for M. tuberculosis proteins in the fast-growing saprophytic strain Mycobacterium smegmatis was developed. Our system employs the inducible acetamidase promoter and allows translational fusion of recombinant M. tuberculosis proteins with polyhistidine or influenza hemagglutinin epitope tags for affinity purification. Using eGFP as reporter gene, we showed that the acetamidase promoter is tightly regulated in M. smegmatis and that this promoter is much stronger than the widely used constitutive groEL2 promoter. We then cloned 11 open reading frames (ORFs) found within RD1 and successfully expressed and purified the respective proteins. Sera from tuberculosis patients and M. tuberculosis-infected mice reacted with 10 purified RD1 proteins, thus demonstrating that Rv3871, Rv3872, Rv3873, CFP-10, ESAT-6, Rv3876, Rv3878, Rv3879c and ORF-14 are expressed in vivo. Finally, glycosylation of the RD1 proteins was analyzed. We present preliminary evidence that the PPE protein Rv3873 is glycosylated at its C terminus, thus highlighting the ability of M. smegmatis to produce M. tuberculosis proteins bearing posttranslational modifications.  相似文献   

8.
SmpB, a small tmRNA binding protein, is essential for trans-translation. 6His and FLAG tagged SmpB was cloned from Mycobacterium tuberculosis H37Rv. It was expressed in Escherichia coli using the T7 promoter-polymerase system. Anti-FLAG M2 agarose was used for its purification. Mycobacterial SmpB copurifies with other proteins. We identified elongation factor EF-Tu in the purified SmpB preparations.  相似文献   

9.
A number of essential genes have been identified in mycobacteria, but methods to study these genes have not been developed, leaving us unable to determine the function or biology of the genes. We investigated the use of a tetracycline-inducible expression system in Mycobacterium tuberculosis and Mycobacterium smegmatis. Using a reporter gene which encodes an unstable variant of GFP, we showed that tetracycline-inducible expression occurred in M. smegmatis and that expression levels were titratable to some extent by varying the concentration of tetracycline. The removal of tetracycline led to cessation of GFP expression, and we showed that this was a controllable on/off switch for fluorescence upon addition and removal of the antibiotic inducer. The system also functioned in M. tuberculosis, giving inducible expression of the reporter gene. We used homologous recombination to construct a strain of M. tuberculosis that expressed the only copy of the tryptophan biosynthetic enzyme, TrpD, from the tetracycline-inducible promoter. This strain was conditionally auxotrophic, showing auxotrophy only in the absence of tetracycline, confirming that trpD was tightly controlled by the foreign promoter. This is the first demonstration of the use of an inducible promoter to generate a conditional auxotroph of M. tuberculosis. The ability to tightly regulate genes now gives us the possibility to define the functions of essential genes by switching them off under defined conditions and paves the way for in vivo studies.  相似文献   

10.
11.
A calmodulin-like protein (CAMLP) from Mycobacterium smegmatis was purified to homogeneity and partially sequenced; these data were used to produce a full-length clone, whose DNA sequence contained a 55-amino-acid open reading frame. M. smegmatis CAMLP, expressed in Escherichia coli, exhibited properties characteristic of eukaryotic calmodulin: calcium-dependent stimulation of eukaryotic phosphodiesterase, which was inhibited by the calmodulin antagonist trifluoperazine, and reaction with anti-bovine brain calmodulin antibodies. Consistent with the presence of nine acidic amino acids (16%) in M. smegmatis CAMLP, there is one putative calcium-binding domain in this CAMLP, compared to four such domains for eukaryotic calmodulin, reflecting the smaller molecular size (approximately 6 kDa) of M. smegmatis CAMLP. Ultracentrifugation and mass spectral studies excluded the possibility that calcium promotes oligomerization of purified M. smegmatis CAMLP.  相似文献   

12.
The trehalose-phosphate synthase (TPS) of Mycobacterium smegmatis was previously purified to apparent homogeneity and several peptides from the 58 kDa protein were sequenced. Based on that sequence information, the gene for TPS was identified in the Mycobacterium tuberculosis genome, and the gene was cloned and expressed in Escherichia coli with a (His)6 tag at the amino terminus. The TPS was expressed in good yield and as active enzyme, and was purified on a metal ion column to give a single band of approximately 58 kDa on SDS/PAGE. Approximately 1.3 mg of purified TPS were obtained from a 1-L culture of E. coli ( approximately 2.3 g cell paste). The purified recombinant enzyme showed a single band of approximately 58 kDa on SDS/PAGE, but a molecular mass of approximately 220 kDa by gel filtration, indicating that the active TPS is probably a tetrameric protein. Like the enzyme originally purified from M. smegmatis, the recombinant enzyme is an unusual glycosyltransferase as it can utilize any of the nucleoside diphosphate glucose derivatives as glucosyl donors, i.e. ADP-glucose, CDP-glucose, GDP-glucose, TDP-glucose and UDP-glucose, with ADP-glucose, GDP-glucose and UDP-glucose being the preferred substrates. These studies prove conclusively that the mycobacterial TPS is indeed responsible for catalyzing the synthesis of trehalose-P from any of the nucleoside diphosphate glucose derivatives. Although the original enzyme from M. smegmatis was greatly stimulated in its utilization of UDP-glucose by polyanions such as heparin, the recombinant enzyme was stimulated only modestly by heparin. The Km for UDP-glucose as the glucosyl donor was approximately 18 mm, and that for GDP-glucose was approximately 16 mm. The enzyme was specific for glucose-6-P as the glucosyl acceptor, and the Km for this substrate was approximately 7 mm when UDP-glucose was the glucosyl donor and approximately 4 mm with GDP-glucose. TPS did not show an absolute requirement for divalent cations, but activity was increased about twofold by 10 mm Mn2+. This recombinant system will be useful for obtaining sufficient amounts of protein for structural studies. TPS should be a valuable target site for chemotherapeutic intervention in tuberculosis.  相似文献   

13.
Mycobacterium smegmatis has been shown to contain two forms of polyprenyl phosphate (Pol-P), while Mycobacterium tuberculosis contains only one. Utilizing subcellular fractions from M. smegmatis and M. tuberculosis, we show that Pol-P synthesis is different in these species. The specific activities of the prenyl diphosphate synthases in M. tuberculosis are 10- to 100-fold lower than those in M. smegmatis. In M. smegmatis decaprenyl diphosphate and heptaprenyl diphosphate were the main products synthesized in vitro, whereas in M. tuberculosis only decaprenyl diphosphate was synthesized. The data from both organisms suggest that geranyl diphosphate is the allylic substrate for two distinct prenyl diphosphate synthases, one located in the cell membrane that synthesizes omega,E,Z-farnesyl diphosphate and the other present in the cytosol that synthesizes omega,E,E,E-geranylgeranyl diphosphate. In M. smegmatis, the omega,E, Z-farnesyl diphosphate is utilized by a membrane-associated prenyl diphosphate synthase activity to generate decaprenyl diphosphate, and the omega,E,E,E-geranylgeranyl diphosphate is utilized by a membrane-associated activity for the synthesis of the heptaprenyl diphosphate. In M. tuberculosis, however, omega,E,E,E-geranylgeranyl diphosphate is not utilized for the synthesis of heptaprenyl diphosphate. Thus, the difference in the compositions of the Pol-P of M. smegmatis and M. tuberculosis can be attributed to distinct enzymatic differences between these two organisms.  相似文献   

14.
Porins form channels in the mycolic acid layer of mycobacteria and thereby control access of hydrophilic molecules to the cell. We purified a 100 kDa protein from Mycobacterium smegmatis and demonstrated its channel-forming activity by reconstitution in planar lipid bilayers. The mspA gene encodes a mature protein of 184 amino acids and an N-terminal signal sequence. MALDI mass spectrometry of the purified porin revealed a mass of 19 406 Da, in agreement with the predicted mass of mature MspA. Dissociation of the porin by boiling in 80% dimethyl sulphoxide yielded the MspA monomer, which did not form channels any more. Escherichia coli cells expressing the mspA gene produced the MspA monomer and a 100 kDa protein, which had the same channel-forming activity as whole-cell extracts of M. smegmatis with organic solvents. These proteins were specifically detected by a polyclonal antiserum that was raised to purified MspA of M. smegmatis. These results demonstrate that the mspA gene encodes a protein of M. smegmatis, which assembles to an extremely stable oligomer with high channel-forming activity. Database searches did not reveal significant similarities to any other known protein. Southern blots showed that the chromosomes of fast-growing mycobacterial species contain homologous sequences to mspA, whereas no hybridization could be detected with DNA from slow growing mycobacteria. These results suggest that MspA is the prototype of a new class of channel-forming proteins.  相似文献   

15.
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.  相似文献   

16.
Ganesh N  Muniyappa K 《Proteins》2003,53(1):6-17
In eubacteria, RecA proteins belong to a large superfamily of evolutionarily conserved, filament-forming, functional homologs of DNA strand exchange proteins. Here, we report the functional characterization of Mycobacterium smegmatis (Ms) and Mycobacterium tuberculosis (Mt) RecA proteins. Although in some respects Ms and Mt RecA proteins are structural and functional homologs of Escherichia coli (Ec) RecA, there are significant differences as well. The single-stranded DNA-binding property of RecA proteins was analyzed by electrophoretic mobility shift assays. We observed that Ms or Mt RecA proteins bound single-stranded DNA in a manner distinct from that of Ec RecA: The former two were able to form protein-DNA complexes in the presence of high salt. Further experiments indicated that Ms or Mt RecA proteins catalyzed adenosine triphosphate hydrolysis at approximately comparable rates across a wide range of pHs. Significantly, DNA strand invasion promoted by Ms or Mt RecA proteins displayed similar kinetics but distinctly different pH profiles. In contrast to MtRecA, MsRecA by itself was unable to form joint molecules across a wide range of pHs. However, regardless of the order in which SSB was added, it was able to stimulate MsRecA to form joint molecules within a narrow pH range, indicating that SSB is a required accessory factor. Together, these results provide a source of sharp contrast between EcRecA and mycobacterial RecAs on the one hand and Mt and Ms RecA proteins on the other.  相似文献   

17.
A genomic library of Mycobacterium smegmatis DNA was constructed in phage EMBL3. A clone (gamma HB85) containing rRNA genes was isolated using as probes, fragments of E. coli rRNA cistron B. This cloned DNA fragment was mapped by restriction analysis and was shown to contain one complete set of rRNA genes (rRNA A). The physical mapping of the second set of rRNA genes of M. smegmatis (rRNA B) was done by restriction analysis of total chromosomal DNA. The two sets of rRNA genes showed highly conserved restriction sites within the respective sets but not in the flanking regions. The two rRNA sets of genes are organised like in the other eubacteria in the order 16S-23S-5S.  相似文献   

18.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

19.
20.
The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号