首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Environmental toxicology emphasizes the difference from traditional toxicology in which pure compounds of interest are added to purified diets, or injected into the test animals. When the objective is to study the fate and effects of trace elements in the environment, knowledge of the speciation of the elements and their physico-chemical forms is important.2. Cadmium salts such as the sulfides, carbonates or oxides, are practically insoluble in water. However, these can be converted to water-soluble salts in nature under the influence of oxygen and acids. Chronic exposure to Cd is associated with renal toxicity in humans once a critical body burden is reached.3. The solubility of As(III) oxide in water is fairly low, but high in either acid or alkali. In water, arsenic is usually in the form of the arsenate or arsenite. As(III) is systemically more poisonous than the As(V), and As(V) is reduced to the As(III) form before exerting any toxic effects. Organic arsenicals also exert their toxic effects in vivo in animals by first metabolizing to the trivalent arsenoxide form. Some methyl arsenic compounds, such as di- and trimethylarsines, occur naturally as a consequence of biological activity. The toxic effect of arsenite can be potentiated by dithiols, while As has a protective effect against the toxicity of a variety of forms of Se in several species.4. Selenium occurs in several oxidation states and many selenium analogues of organic sulfur compounds exist in nature. Selenium in selenate form occurs in alkaline soils, where it is soluble and easily available to plants. Selenite binds tightly to iron and aluminum oxides and thus is quite insoluble in soils. Hydrogen selenide is a very toxic gas at room temperature. The methylated forms of Se are much less toxic for the organism than selenite. However, the methylated Se derivatives have strong synergistic toxicity with other minerals such as arsenic.5. Aquatic organisms absorb and retain Hg in the tissues, as methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts.  相似文献   

2.
The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5–3.5. At an initial Se concentration of 100 mg/L (1.3 m M), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively.  相似文献   

3.
The aim of the study was to estimate the ability of ten tree and bush species to tolerate and accumulate Cd, Cu, Pb, Zn, and As species [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg?1) in a pot experiment. The premise being that it will then be possible to select the most promising tree/bush species, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested tree species were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg?1 DW), where the dominant As species was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected tree species that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters.  相似文献   

4.
The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29–167 mg kg?1 dw), as well as As transfer factor (4–45%). Grains retained the least level of As (0.7–3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05–0.12 mg kg?1 dw), whereas that of As was high (0.4–1.68 mg kg?1 dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas.  相似文献   

5.
Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2T and Desulfitobacterium frappieri PCP-1T. Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.  相似文献   

6.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

7.
Biomethylation and volatilization of trace elements may contribute to their redistribution in the environment. However, quantification of volatile, methylated species in the environment is complicated by a lack of straightforward and field-deployable air sampling methods that preserve element speciation. This paper presents a robust and versatile gas trapping method for the simultaneous preconcentration of volatile selenium (Se), sulfur (S), and arsenic (As) species. Using HPLC-HR-ICP-MS and ESI-MS/MS analyses, we demonstrate that volatile Se and S species efficiently transform into specific non-volatile compounds during trapping, which enables the deduction of the original gaseous speciation. With minor adaptations, the presented HPLC-HR-ICP-MS method also allows for the quantification of 13 non-volatile methylated species and oxyanions of Se, S, and As in natural waters. Application of these methods in a peatland indicated that, at the selected sites, fluxes varied between 190–210 ng Se·m−2·d−1, 90–270 ng As·m−2·d−1, and 4–14 µg S·m−2·d−1, and contained at least 70% methylated Se and S species. In the surface water, methylated species were particularly abundant for As (>50% of total As). Our results indicate that methylation plays a significant role in the biogeochemical cycles of these elements.  相似文献   

8.

Background

Selenium hyperaccumulation in plants often involves the synthesis of non-proteinaceous methylated selenoamino acids serving for the elimination of excess selenium from plant metabolism to protect plant homeostasis.

Methods

Our study aimed at the identification of the main selenium species of the selenium hyperaccumulator plant Cardamine violifolia (Brassicaceae) that grows in the wild in the seleniferous region of Enshi, China. A sample of this plant (3.7?g?Se?kg?1 d.w.) was prepared with several extraction methods and the extracted selenium species were identified and quantified with liquid chromatography mass spectrometry set-ups.

Results

The Cardamine violifolia sample did not contain in considerable amount any of the organic selenium species that are often formed in hyperaccumulator plants; the inorganic selenium content (mostly as elemental selenium) accounted only for <20% of total Se. The most abundant selenium compound, accounting for about 40% of total Se was proved to be selenolanthionine, a selenium species that has never been unambiguously identified before from any selenium containing sample. The identification process was completed with chemical synthesis too. The molar ratio of lanthionine:selenolanthionine in the water extract was ca. 1:8.

Conclusions

Finding selenolanthionine as the main organic selenium species in a plant possibly unearths a new way of selenium tolerance. This article is part of a Special Issue entitled Selenium research in biochemistry and biophysics - 200?year anniversary issue, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.  相似文献   

9.
Abstract

The capacity of Elodea canadensis to phytofiltrate arsenic species from water was evaluated. Plants were adapted to tap water and supplemented with 15 and 250?µg L?1 of As. Inorganic arsenic species (As III, As V), and organic arsenic compounds: monomethylarsonate (MMA) and dimethylarsinate (DMA) were analyzed. Sampling was carried out at different times after exposure in culture water and plant organs. Plants exposed to 15?µg L?1 of As concentration showed no significant difference on As concentration (95% confidence level) in their organs compared to controls. When plants were exposed to 250?µg L?1 of As concentration, a significant increase of As concentration in plant organs was observed. After 1?h exposure, plants reduce 63.16% the As concentration in the culture water, with a bioaccumulation factor (BF) of 4.3. Under these conditions, E. canadensis accumulate As V in roots and do not translocate it to stems (transfer factor <1). MMA was determined in stems and leaves. E. canadensis effectively phytofiltrate As from tap water of a city located in an arsenic endemic area from concentrations of 36?µg L?1 to undetectable levels (10?ng L?1).  相似文献   

10.
To determine which of a variety of inorganic and organic selenium compounds could best stimulate glutathione peroxidase, human lymphocytes were cultured with a number of selenium sources. The phytohemagglutinin-transformed lymphocytes were cultured in the presence of75Se bound to serum proteins (25% v/v) or 10?7 M concentrations of [75Se]-selenite, [75Se]-selenate, [75Se]-selenocystine, and [75Se]-selenomethionine. Organic forms of selenium were taken up in preference to inorganic forms. Control cultures, from which exogenous selenium had been omitted, showed a decreased level of glutathione peroxidase activity at the end of a 4 d culture period. Of the Se sources tested, [75Se]-selenocystine and [75Se]-labeled fetal calf serum proteins increased enzyme activity significantly, 79 and 47%, respectively, but selenite increased activity only by 7%. These results indicate that selenium from the two organic sources is most readily available for glutathione peroxidase synthesis.  相似文献   

11.
Bañuelos  G. S.  Sharmarsakar  S.  Cone  D.  Stuhr  G. 《Plant and Soil》2003,249(1):229-236
Water reuse is a proposed strategy for utilizing or disposing of poor quality drainage water produced in the westside of central California. This 2-year field study evaluated the ability of two potential forage species to tolerate irrigation with water high in salinity, boron (B), and selenium (Se). The species used were: Sporobulus airoides var. salado (alkali sacaton) and Medicago sativa var. salado (alfalfa). After first year establishment with good quality water (<1 dS m–1), the two species were furrow-irrigated with drainage effluent that had an average composition of sulfate-dominated salinity ((electrical conductivity (EC) of 6.2 dS m–1)) B (5 mg l–1), and Se (0.245 mg l–1). Both crops were clipped monthly from June to October of each year. Total dry matter yields averaged between 11 and 12 mg ha–1 for both crops irrigated with effluent for two growing seasons. Plant concentrations of Se ranged from a low of 1.3 mg kg–1 in alkali sacaton to a high of 2.5 mg kg–1 in alfalfa, while B concentrations ranged from a low of 60 mg kg–1 in alkali sacaton to a high of 170 mg kg–1 in alfalfa. Chemical composition of the soil changed as follows from preplant to post-irrigation after two seasons with drainage effluent: EC from 2.78 to 6.5 dS m–1, extractable B from 1.9 to 5.6 mg l–1, and no change in extractable Se at 0.012 mg l–1 between 0 and 45 cm. Between 45 and 90 cm, EC values increased from 4.95 to 6.79 dS m–1, extractable B from 2.5 to 4.8 mg l–1, and no change in extractable Se at 0.016 mg l–1. Increased salinity and extractable B levels in the soil indicate that management of soil salinity and B will be necessary over time to sustain long term reuse with poor quality water.  相似文献   

12.
Using a combination of As and Se K-edge and Hg LIII-edge X-ray absorption spectroscopy, 77Se nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry and molecular modeling, we have structurally characterized the novel species methylmercury(II) seleno bis(S-glutathionyl) arsenic(III). This species is formed in aqueous solution from CH3HgOH and the seleno bis(S-glutathionyl) arsinium ion and constitutes an important first step towards characterizing the observed toxicologically relevant interaction between arsenite, selenite and methylmercury which has been previously reported in mammals.  相似文献   

13.
The genus Enterococcus belong to the genera of bacteria that produce lactic acid and can confer health benefits to living organisms. Selenium (Se) is an essential micronutrient for humans and animals. Thirty-six Enterococcus species isolated from dairy products were screened for Se(IV) sorption capacity for use as a probiotics in animal nutrition. Several isolates grew luxuriantly and significantly removed Se(IV) from Se(IV) amended medium. Two isolates, LAB 14 and LAB 18, identified by 16S rRNA gene sequence analysis as Enterococcus faecalis (98% nucleotide sequence similarity) and Enterococcus faecium (97% nucleotide sequence similarity), respectively, were selected for further studies. The two isolates grew optimally and removed selenium at initial pH 7.0. Optimum removal of Se(IV) from the medium was recorded at 25 °C. Time course studies showed that after 8 h of incubation LAB 14 and LAB 18 cultures displayed the highest biomass production and Se(IV) bioremoval and most selenite in culture depleted in 24 h. At initial concentrations of 10 mg L−1 and 60 mg L−1, E. faecium (LAB 18) removed 9.91 mg L−1 and 59.70 mg L−1, respectively after 24 h. Similar Se(IV) bioremoval capacity was recorded with E. faecalis (LAB 14). Substantial amount of Se was detected in biomass of E. faecium (0.4599 mg g−1 of dry weight) and E. faecalis (0.4759 mg g−1 of dry weight). The significant uptake and transformation of Se(IV) by the Enterococcus species observed in this study suggest that they can be used to deliver dietary Se through feed augmentation with Se(IV)-enriched Enterococcus biomass.  相似文献   

14.
The anamorphic basidomycetous yeast Cryptococcus humicolus was shown by hydride generation-gas chromatography-atomic absorption spectrometry to methylate inorganic antimony compounds to mono-, di-, and trimethylantimony species under oxic growth conditions. Methylantimony levels were positively correlated with initial substrate concentrations up to 300 mg Sb l–1 as potassium antimony tartrate (K-Sb-tartrate). Increasing concentrations of K-Sb-tartrate increased the ratio of di- to trimethylantimony species, indicating that methylation of dimethylantimony was rate limiting. Antimony methylation capability in C. humicolus was developed after the exponential growth phase and was dependent upon protein synthesis in the early stationary phase. Inclusion of inorganic arsenic (III) or (V) species alongside antimony in culture incubations enhanced antimony methylation. Pre-incubation of cells with inorganic arsenic (III) further induced antimony methylation capability, whereas pre-incubation with inorganic antimony (III) did not. Exposure of cells to inorganic arsenic—either through pre-incubation or provision during cultivation—influenced the antimony speciation; involatile trimethylantimony species was the sole methylated antimony species detected, i.e. mono- and dimethylantimony species were not detected. Competitive inhibition of antimony methylation was observed at high arsenic loadings. These data indicate that antimony methylation is a fortuitous process, catalysed at least in part by enzymes responsible for arsenic methylation.  相似文献   

15.
The interactive effects of selenium (Se) and arsenic (As) on plant uptake of Se and As have rarely been documented. In this study, the interactive effects of As and Se on their uptake by Chinese brake fern (Pteris vittata), an As-hyperaccumulator and Se-accumulator, were explored in two hydroponic experiments based on a two-factor, five-level central composite design. At Se levels of less than 2.5 mg L?1, increasing amounts of As stimulated the uptake of Se in Chinese brake fern roots, possibly because of the beneficial effects of Se. In contrast, at Se concentrations greater than 2.5 mg L?1, As suppressed the uptake of Se in Chinese brake fern roots. Uptake of As by both fronds and roots of Chinese brake fern was suppressed by the addition of Se, indicating the antagonistic effects of Se on As. In addition, at Se concentrations of less than 2.5 mg L?1, As stimulated the translocation of Se from roots to fronds; meanwhile, the addition of Se resulted in reduced translocation of As from roots to fronds. These findings demonstrate the interactive effects of As and Se on their uptake by Chinese brake fern.  相似文献   

16.
The selenium (Se) content of the diet and/or selenium supplements might have an ameliorating effect on arsenic (As) toxicity as recently shown by Wang et al. (1), Yang et al. (2), and as reviewed by Spallholz et al. (3). The underlying principles of the ameliorating effect is the complexation of Se with As forming the seleno-bis (S-glutathionyl) arsinium ion (4) excreted in bile and the complexation of Se with As in tissues forming nontoxic insoluble selenides (5,6). Addition protection afforded by Se supplementation from arsenicosis could be the elevation of glutathione peroxidase activity reducing the oxidative stress induced by As (7,8). The present study assessed the status of Se and As in hair by neutron activation analysis (NAA). Human hair samples were collected from the United States, Canada, The People's Republic of China (PRC), Bangladesh, and Nepal, the latter two countries now engaged in a struggle to find relief from human arsenicosis resulting from extensive domestic groundwater contamination by As. No statistically significant differences were observed in the samples between the Se and As content of hair from, Lubbock, Texas (USA) or Winnipeg, Canada. The concentration of As in all hair samples analyzed correlated (r=0.960, p<0.001) with the amount of As in the drinking water. Selenium levels in hair were highest from Nepal. The results demonstrate the viability of hair as a noninvasive biomonitor in assessing aspects of dietary Se and environmental As exposure. The hair data confirmed the known low intake of Se in the Keshan disease area of the PRC, the very high accumulation in hair of As from subjects consuming contaminated ground waters, and an adequate Se status in subjects from North America consuming municipal water of low As content. The high As content of hair from people in Bangladesh is the result of a high As consumption from contaminated water compounded by a less than desirable intake of Se (9). From Nepal, the As content of hair corresponded to the known low and high intake of As from contaminated groundwater. The very high Se content found in all hair samples from Nepal might be the result of the use of henna.  相似文献   

17.
The metabolism of arsenic, its affinity to metallothionein (MT), its influence on selenium levels, and its biotransformation to different metabolites in the liver tissue of laying hens exposed to arsenic trioxide (As2O3) was investigated. The experiment was performed with two groups of hens fed for 19 d with either a standard diet or with the same diet enriched in arsenic (30 microg/g). The major findings were as follows: 1. After 19 d exposure, about 65% of the total liver As was found in the water-soluble phase (100,000g centrifuged supernatant). In liver supernatant, As binding was found mostly in the range of very low-molecular-weight proteins (Mr < 10,000). Although after exposure the amount of MT-like proteins increased, the As bound to it was only in trace amounts. The protein was identified by convential procedures as Zn,Cu-thionein with traces of selenium and arsenic. 2. Arsenic exposure resulted in almost unchanged Se levels regarding its tissue concentrations and distribution between supernatant and pellet, where about 10% of total Se was found in the supernatant. On the contrary, As exposure did affect Cd levels. Tissue Cd concentration was slightly diminished, but the percentage of tissue Cd found in the water-soluble phase was increased from 20% to 40%. 3. In methanol extracts of tissue and supernatant of the As-exposed group, only two arsenic compounds were detected, As(III) and dimethylarsinic acid (DMA), the latter prevailing.  相似文献   

18.

Background  

Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III) and As(V)] and can be transformed by microbial redox processes in the natural environment. As(III) is much more toxic and mobile than As(V), hence microbial arsenic redox transformation has a major impact on arsenic toxiCity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III) resistance levels and related functional genes of these species.  相似文献   

19.
Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured γ-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 μg of Se g of protein−1 h−1), compared to other cultured bacterial isolates.  相似文献   

20.
The aim of this study was to evaluate the influence of arsenic and bromine exposure with or without iodine and selenium supplementation on the element level in the thyroid of rats. Four major groups of Wistar female rats were fed with respective diets: group A - standard diet, group B - iodine rich diet (10 mg I/kg food), group C - selenium rich diet (1 mg Se/kg) and group D - iodine and selenium rich diet (as in group B and C). Each group was divided into four subgroups per 7 animals each receiving either NaAsO(2) ip (6.5 mg.kg(-1) twice a week for two weeks and 3.25 mg.kg(-1) for six weeks) or KBr in drinking water (58.8 mg.l(-1)) for 8 weeks or combined administration of both substances. Remaining subgroup served as controls. After 8 weeks thyroid glands were analyzed by ICP-MS for As, Br, Se, and I content. The exposition of rat to arsenic or bromine causes the accumulation of these elements in the thyroid gland ( approximately 18 ppm of As, approximately 90 ppm of Br) and significantly affects iodine and selenium concentration in the thyroid. In iodine and/or selenium supplemented rats the bromine intake into the thyroid was lowered to approximately 50% of the level in unsupplemented animals. Also selenium thyroid level elevated due to KBr administration was lowered by iodine supplementation in the diet. The accumulation of arsenic in the thyroid was not influenced by selenium or iodine supplementation; however, As(III) administration increased iodine thyroid level and suppressed selenium thyroid level in selenium or iodine supplemented group of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号