首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothesis that acetylcholine, substance P, and LHRH suppress M-current by activating phospholipase C was tested. Each agonist caused turnover of phosphoinositide, as measured by release of inositol phosphates, and a modest transient rise in intracellular free Ca2+ ([ Ca2+]i), as determined with fura-2. Active phorbol esters depressed M-current only 50% and did not prevent further suppression by LHRH. M-current, its control by agonists, and its depression by phorbol esters were not affected by adding inositol trisphosphate or Ca2+ buffers with high or low Ca2+ to the whole-cell, voltage-clamp pipette. We conclude that phospholipase C activation does occur but does not mediate the suppression of M-current by agonists. Caffeine produced large [Ca2+]i transients and acted as an agonist to suppress M-current.  相似文献   

2.
1. Effects of bath-applied phorbol dibutyrate (PDBu) on M currents (IM) and on the inhibition of IM by muscarine and luteinizing hormone-releasing hormone (LHRH) were recorded in voltage-clamped bullfrog lumbar sympathetic ganglion cells. 2. PDBu (0.1-30 microM) produced a slowly developing, irreversible and partial (less than or equal to 60%) inhibition of IM. This effect was not replicated by 4-alpha-phorbol or by vehicle. 3. After treatment with PDBu, residual IM showed a reduced sensitivity to inhibition by muscarine or LHRH but not by Ba2+. The reduced response to muscarine appeared to result from a 10-fold shift in the concentration dependence for inhibition. 4. PDBu did not clearly reproduce the ability of muscarine to inhibit the slow, Ca-activated K current IAHP or to increase the leak conductance at hyperpolarized potentials. The latter effect of muscarine was enhanced, rather than inhibited, by PDBu. 5. IM and IAHP were not inhibited by 1 mM dibutyryl cyclic AMP or by 20 microM forskolin. 6. It is concluded that activation of protein kinase C, but not protein kinase A, partly replicates the effect of muscarine on frog sympathetic neurons.  相似文献   

3.
Changes in cytosolic free Ca2+ concentration [( Ca2+]i) due to Ca2+ entry or Ca2+ release from internal stores were spatially resolved by digital imaging with the Ca2+ indicator fura-2 in frog sympathetic neurons. Electrical stimulation evoked a rise in [Ca2+]i spreading radially from the periphery to the center of the soma. Elevated [K+]o also increased [Ca2+]i, but only in the presence of external Ca2+, indicating that Ca2+ influx through Ca2+ channels is the primary event in the depolarization response. Ca2+ release or uptake from caffeine-sensitive internal stores was able to amplify or attenuate the effects of Ca2+ influx, to generate continued oscillations in [Ca2+]i, and to persistently elevate [Ca2+]i above basal levels after the stores had been Ca2(+)-loaded.  相似文献   

4.
Desensitization occurs when the response to a neurotransmitter receptor agonist wanes in the continued presence of agonist. In amphibian sympathetic neurons, both muscarinic and peptidergic receptor agonists inhibit a K+ current, the M-current (IM), and this inhibition desensitizes. We have studied the desensitization to substance P (SP) by whole-cell recordings from dissociated sympathetic neurons from bullfrogs. When ATP in the recording pipette was replaced with AMP-PNP, SP still inhibited IM, but no desensitization was observed, indicating that ATP hydrolysis is required for desensitization. Desensitization inhibitors of beta-adrenergic receptors did not block desensitization to SP. When a low dose of muscarine sufficient to inhibit IM, but not to elicit desensitization, was applied simultaneously with a desensitizing dose of SP, IM remained depressed and did not desensitize. Thus, there may be separate systems controlling desensitization for different agonists, or the enzyme(s) involved is "compartmentalized."  相似文献   

5.
The M-current (IK(M)) is a slow voltage-gated K+ current which can be inhibited by muscarinic acetylcholine-receptor (mAChR) agonists. In the present experiments we have tested whether this inhibition results from a local (membrane-delimited) interaction between the receptor and adjacent channels, or whether channel closure is mediated by a diffusible messenger. To do this, single KM(+)-channel currents were recorded from membrane patches in dissociated rat superior cervical sympathetic neurons by using cell-attached patch electrodes. Channel activity was inhibited when muscarine was applied to the cell membrane outside the patch but persisted when channels were exposed to muscarine added to the pipette solution. We conclude that a diffusible molecule (or molecules) is (are) required to induce intrapatch channel closure following activation of extra-patch receptors.  相似文献   

6.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

7.
8.
Stimulation of postsynaptic M(1) muscarinic receptors (M(1)Rs) increases firing rates of both sympathetic and central neurons that underlie increases in vasomotor tone, heart rate, and cognitive memory functioning. At the cellular level, M(1)R stimulation modulates currents through various voltage-gated ion channels, including KCNQ K+ channels (M-current) and both L- and N-type Ca2+ channels (L- and N-current) by a pertussis toxin-insensitive, slow signaling pathway. Depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) during M(1)R stimulation suffices to inhibit M-current. We found previously that following PIP2 hydrolysis by phospholipase C, activation of phospholipase A2 and liberation of a lipid metabolite, most likely arachidonic acid (AA) are necessary for L- and N-current modulation. Here we examined the involvement of a third lipase, diacylglycerol lipase (DAGL), in the slow pathway. We documented the presence of DAGL in superior cervical ganglion neurons, and then tested the highly selective DAGL inhibitor, RHC-80267, for its capacity to antagonize M(1)R-mediated modulation of whole-cell Ca2+ currents. RHC-80267 significantly reduced L- and N-current inhibition by the muscarinic agonist oxotremorine-M (Oxo-M) but did not affect their inhibition by exogenous AA. Moreover, voltage-dependent inhibition of N-current by Oxo-M remained in the presence of RHC-80267, indicating selective action on the slow pathway. RHC also blocked inhibition of recombinant N-current. In contrast, RHC-80267 had no effect on native M-current inhibition. These data are consistent with a role for DAGL in mediating L- and N-current inhibition. These results extend our previous findings that the signaling pathway mediating L- and N-current inhibition diverges from the pathway initiating M-current inhibition.  相似文献   

9.
10.
Talley EM  Lei Q  Sirois JE  Bayliss DA 《Neuron》2000,25(2):399-410
Inhibition of "leak" potassium (K+) channels is a widespread CNS mechanism by which transmitters induce slow excitation. We show that TASK-1, a two pore domain K+ channel, provides a prominent leak K+ current and target for neurotransmitter modulation in hypoglossal motoneurons (HMs). TASK-1 mRNA is present at high levels in motoneurons, including HMs, which express a K+ current with pH- and voltage-dependent properties virtually identical to those of the cloned channel. This pH-sensitive K+ channel was fully inhibited by serotonin, norepinephrine, substance P, thyrotropin-releasing hormone, and 3,5-dihydroxyphenylglycine, a group I metabotropic glutamate receptor agonist. The neurotransmitter effect was entirely reconstituted in HEK 293 cells coexpressing TASK-1 and the TRH-R1 receptor. Given its expression patterns and the widespread prevalence of this neuromodulatory mechanism, TASK-1 also likely supports this action in other CNS neurons.  相似文献   

11.
Calmodulin modulation of ion channels has emerged as a prominent theme in biology. The sensitivity of KCNQ1-5 K+ channels to modulation by Ca2+/calmodulin (CaM) was studied using patch-clamp, Ca2+ imaging, and biochemical and pharmacological approaches. Coexpression of CaM in Chinese hamster ovary (CHO) cells strongly reduced currents of KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3. In simultaneous current recording/Ca2+ imaging experiments, CaM conferred Ca2+ sensitivity to KCNQ4 and KCNQ5, but not to KCNQ1, KCNQ3, or KCNQ1/KCNE1 channels. A chimera constructed from the carboxy terminus of KCNQ4 and the rest KCNQ1 displayed Ca2+ sensitivity similar to KCNQ4. Chimeras constructed from different lengths of the KCNQ4 carboxy terminal and the rest KCNQ3 localized a region that confers sensitivity to Ca2+/CaM. Lobe-specific mutations of CaM revealed that its amino-terminal lobe mediates the Ca2+ sensitivity of the KCNQ/CaM complex. The site of CaM action within the channel carboxy terminus overlaps with that of the KCNQ opener N-ethylmaleimide (NEM). We found that CaM overexpression reduced NEM augmentation of KCNQ2, KCNQ4, and KCNQ5, and NEM pretreatment reduced Ca2+/CaM-mediated suppression of M current in sympathetic neurons by bradykinin. We propose that two functionally distinct types of carboxy termini underlie the observed differences among this channel family.  相似文献   

12.
Patch clamp technique was used to record cyclic nucleotide-dependent current of the frog olfactory receptor cell plasma membrane. Data obtained indicate that the channels passing this current are permeable to Ca2+ or Mg2+ and moderately selective for monovalent cations according to the sequence Li+, Na+, K+ greater than Rb+ greater than Cs+ and are effectively blocked by 1-cis-diltiazem and 3',4'-dichlorobenzamil. The conductance of single cyclic nucleotide-gated channels in solutions with low Ca2+ and Mg2+ content is about 19 pS. The results demonstrate that cyclic nucleotide-activated channels of olfactory receptor cells are virtually identical to photoreceptor ones.  相似文献   

13.
K S Elmslie  W Zhou  S W Jones 《Neuron》1990,5(1):75-80
LHRH (chicken II luteinizing hormone-releasing hormone) partially reduces calcium currents and slows the activation kinetics of part of the remaining current in frog sympathetic neurons. The effects of LHRH are mimicked by intracellular dialysis with GTP-gamma-S. A strong depolarization can temporarily reverse the effects of LHRH or GTP-gamma-S: activation kinetics return to normal, and the amplitude of the current is increased (facilitation). Facilitation develops rapidly (tau = 4-6 ms at greater than +30 mV) and decays more slowly (t 1/2 = 60 ms at -80 mV). Tail currents in LHRH are smaller and faster than in the control, and these effects are partially reversed by facilitation. These results can be explained by a model in which a fraction of the channels is shifted into a "reluctant" gating mode, where opening requires stronger depolarization. If this mechanism is at the root of presynaptic inhibition, our results predict that inhibition of transmitter release would be overcome during bursts of high frequency activity.  相似文献   

14.
Effects of Cd2+, Co2+, Pb2+, Fe2+ and Mg2+ (1-100 microM) on single-channel properties of the intermediate conductance Ca(2+)-activated K+ (CaK) channels were investigated in inside-out patches of human erythrocytes in a physiological K+ gradient. Cd2+, Co2+ and Pb2+, but not Fe2+ and Mg2+, were able to induce CaK channel openings. The potency of the metals to open CaK channels in human erythrocytes follows the sequence Pb2+, Cd2+ > Ca2+ > or = Co2+ > Mg2+, Fe2+. At higher concentrations Pb2+, Cd2+ and Co2+ block the CaK channel by reducing the opening frequency and the single-channel current amplitude. The potency of the metals to reduce CaK channel opening frequency follows the sequence Pb2+ > Cd2+, Co2+ > Ca2+, which differs from the potency sequence Cd2+ > Pb2+, Co2+ > Ca2+ to reduce the unitary single-channel current amplitude. Fe2+ reduced the channel opening frequency and enhanced the two open times of CaK channels activated by Ca2+, whereas up to 100 microM Mg2+ had no effect on any of the measured single-channel parameters. It is concluded that the activation of CaK channels of human erythrocytes by various metal ions occurs through an interaction with the same regulatory site at which Ca2+ activates these channels. The different potency orders for the activating and blocking effects suggest the presence of at least one activation and two blocking sites. A modulatory binding site for Fe2+ exists as well. In addition, the CaK channels in human erythrocytes are distinct from other subtypes of Ca(2+)-activated K+ channels in their sensitivity to the metal ions.  相似文献   

15.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

16.
A peptidyl inhibitor of the high conductance Ca(2+)-activated K+ channels (KCa) has been purified to homogeneity from the venom of the scorpion Androctonus mauretanicus mauretanicus. The peptide has been named kaliotoxin (KTX). It is a single 4-kDa polypeptide chain. Its complete amino acid sequence has been determined. KTX displays sequence homology with other scorpion-derived inhibitors of Ca(2+)-activated or voltage-gated K+ channels: 44% homology with charybdotoxin (CTX), 52% with noxiustoxin (NTX), and 44% with iberiotoxin (IbTX). Electrophysiological experiments performed in identified nerve cells from the mollusc Helix pomatia showed that KTX specifically suppressed the whole cell Ca(2+)-activated K+ current. KTX had no detectable effects on voltage-gated K+ current (delayed rectifier and fast transient A current) or on L-type Ca2+ currents. KTX interacts in a one-to-one way with KCa channels with a Kd of 20 nM. Single channel experiments were performed on high conductance KCa channels excised from the above Helix neurons and from rabbit coeliac ganglia sympathetic neurons. KTX acted exclusively at the outer face of the channel. KTX applied on excised outside-out KCa channels induced a transient period of fast-flicker block followed by a persistent channel blockade. The KTX-induced block was not voltage-dependent which suggests differences in the blockade of KCa channels by KTX and by CTX. Comparison of KTX and CTX sequences leads to the identification of a short amino acid sequence (26-33) which may be implicated in the toxin-channel interaction. KTX therefore appears to be a useful tool for elucidating the molecular pharmacology of the high conductance Ca(2+)-activated K+ channel.  相似文献   

17.
It has been shown previously that 3,4-diaminopyridine (3,4-DAP) facilitates synaptic transmission in the frog sympathetic ganglion inducing so-called stimulus-bound repetition (SBR), i.e. a brief burst of repetitive postganglionic discharges after a single orthodromic stimulus. In the present study we analyzed one of the possible mechanisms of the 3,4-DAP-induced SBR, namely changes in postsynaptic membrane excitability. We found that 3,4-DAP in concentration optimal for inducing SBR (2 X 10(-4) mol.l-1) had no direct effect on the excitability of the postsynaptic membrane of frog sympathetic neurones. The excitability was expressed as the threshold for action potentials elicited orthodromically, antidromically and directly, as well as the spike activity evoked by constant depolarizing current pulses. We also indirectly excluded the involvement of two other possible mechanisms of neuronal membrane excitability modulation in the 3,4-DAP-induced SBR, i.e. the M-current suppression by analyzing the participation of muscarinic receptor activation in the SBR, and inhibition of the Ca(2+)-activated K+ currents by measuring the duration of afterhyperpolarization of antidromic action potential. Our findings indicate that no remarkable changes in the properties of the postsynaptic membrane contribute to the generation of 3,4-DAP-induced SBR in the frog sympathetic ganglion. This strongly supports the hypothesis that the mechanism underlying SBR evoked by this drug is presynaptic.  相似文献   

18.
Ca2+ permeation in cyclic nucleotide-gated channels.   总被引:4,自引:1,他引:3       下载免费PDF全文
C Dzeja  V Hagen  U B Kaupp    S Frings 《The EMBO journal》1999,18(1):131-144
Cyclic nucleotide-gated (CNG) channels conduct Na+, K+ and Ca2+ currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2+ concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2+ signaling depends on its specific Ca2+ conductance, it is necessary to analyze Ca2+ permeation for each individual channel type. We have analyzed Ca2+ permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2+ current over the physiological range of Ca2+ concentrations and found that Ca2+ permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2+ permeation is controlled by the Ca2+-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2+ signals.  相似文献   

19.
Shaker K+ channels were expressed in outside-out macropatches excised from Xenopus oocytes, and the effects on gating of removal of extracellular Ca2+ were examined in the complete absence of intracellular divalent cations. Removal of extracellular Ca2+ by perfusion with EDTA-containing solution caused a small negative shift in the channel's voltage-activation curve and led to an increased nonselective leak, but did not otherwise alter or disrupt the channels. The results contradict the proposal that Ca2+ is an essential component required for maintenance of ion selectivity and proper gating of Kv-type K+ channels. The large nonselective leak in Ca2+-free conditions was found to be a patch-seal phenomenon related to F- ion in the recording pipette.  相似文献   

20.
NFATc-mediated gene expression constitutes a critical step during neuronal development and synaptic plasticity. Although considerable information is available regarding the activation and functionality of specific NFATc isoforms, in neurons little is known about how sensitive NFAT nuclear translocation is to specific patterns of electrical activity. Here we used high-speed fluo-4 confocal imaging to monitor action potential (AP)-induced cytosolic Ca2+ transients in rat sympathetic neurons. We have recorded phasic and repetitive AP patterns, and corresponding Ca2+ transients initiated by either long (100-800 ms) current-clamp pulses, or single brief (2 ms) electrical field stimulation. We address the functional consequences of these AP and Ca2+ transient patterns, by using an adenoviral construct to express NFATc1-CFP and evaluate NFATc1-CFP nuclear translocation in response to specific patterns of electrical activity. Ten Hertz trains stimulation induced nuclear translocation of NFATc1, whereas 1 Hz trains did not. However, 1 Hz train stimulation did result in NFATc1 translocation in the presence of 2 mM Ba2+, which inhibits M-currents and promotes repetitive firing and the accompanying small (approximately 0.6 DeltaF/F0) repetitive and summating Ca2+ transients. Our results demonstrate that M-current inhibition-mediated spike frequency facilitation enhances cytosolic Ca2+ signals and NFATc1 nuclear translocation during trains of low frequency electrical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号