首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
5.
6.
The construction and isolation of three recombinant DNAs complementary to different mouse L-cell Mr = 68,000 heat shock protein (hsp68) mRNAs is described. cDNA libraries derived from heat-shocked mouse L-cell poly(A)+ RNA by the vector-linked primer strategy of cDNA synthesis and cloning of Okayama and Berg (Okayama, H., and Berg, P. (1982) Mol. Cell. Biol. 2, 161-170) were screened first with a Drosophila hsp70 heterologous probe and subsequently with a cDNA probe isolated from the first screening. Positive clones were assigned to one of three sets based on their restriction map, and the largest member of each group was chosen for further analysis. All three cDNAs hybrid-select mRNA for the mouse major heat shock protein (hsp68) as assayed by in vitro translation and hybridize preferentially to two heat shock-induced hsp68 mRNAs on Northern blots. The coding regions of the cDNAs are almost identical and closely resemble other HSP70 genes but the 3' untranslated regions diverge considerably. Differences in the lengths of the untranslated regions are responsible for the two different sized induced hsp68 mRNAs in mouse L-cells. The physical maps of these cDNA clones and the limited number of mouse genomic DNA fragments detected on Southern blots suggest that there are at least three closely related heat shock-inducible members of the mouse HSP70 gene family. None of the cloned cDNAs are derived from the two related cognate genes known to be present in the mouse genome.  相似文献   

7.
8.
9.
Heat-shock avian reticulocytes exhibit enhanced synthesis of a greater than 450-kDa protein. Biochemical, immunochemical, and visual criteria were used to identify this protein as the iron storage protein ferritin. The 21-kDa ferritin subunits synthesized during heat shock are similar in size and pI to the subunits that are constitutively synthesized. The 2-6-fold heat shock-induced increase in ferritin synthesis appears to be regulated at the translational level as it is insensitive to actinomycin D. Northern and dot-blot hybridization analyses of cytoplasmic RNAs with avian H-ferritin cDNA fragments support the contention that the heat shock stimulation of ferritin synthesis is translationally regulated. These latter studies demonstrate that the heat shock-induced synthesis of ferritin does not involve a change in the amount of total cytoplasmic ferritin mRNAs, but rather appears to entail a translocation of cytoplasmic H-ferritin mRNAs from a polyribosome-free, translationally repressed state to a polyribosome-associated, translationally active state. These results suggest that thermally stressed avian reticulocytes have a critical and functional need for the synthesis of additional ferritin and that its enhanced synthesis, unlike the new and/or enhanced synthesis of the well-established avian heat shock proteins, is regulated wholly at the translational level.  相似文献   

10.
Heat shock response of murine Chlamydia trachomatis.   总被引:18,自引:4,他引:14       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
15.
Sensing a sudden change of the growth temperature, all living organisms produce heat shock proteins or cold shock proteins to adapt to a given temperature. In a heat shock response, the heat shock sigma factor plays a major role in the induction of heat shock proteins including molecular chaperones and proteases, which are well-conserved from bacteria to human. In contrast, no such a sigma factor has been identified for the cold shock response. Instead, RNAs and RNA-binding proteins play a major role in cold shock response. This review describes what happens in the cell upon cold shock, how E. coli responds to cold shock, how the expression of cold shock proteins is regulated, and what their functions are.  相似文献   

16.
17.
Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, an essential DEAD box protein and putative RNA helicase. Rip1p interacts directly with Gle1p and is the only protein known to be essential for mRNA export after heat shock but not under normal growth conditions. We report that in cells lacking Rip1p, both Gle1p and Rat8p dissociate from NPCs following heat shock at 42 degrees C. Rat8p but not Gle1p was retained at NPCs if rip1Delta cells were first shifted to 37 degrees C and then to 42 degrees C, and this was correlated with preserving mRNA export in heat-shocked rip1Delta cells. Export following ethanol shock was less dependent on the presence of Rip1p. Exposure to 10% ethanol led to dissociation of Rat8p from NPCs in both wild-type and rip1Delta cells. Following this treatment, Rat8p was primarily nuclear in wild-type cells but primarily cytoplasmic in rip1Delta cells. We also determined that efficient export of heat shock mRNA after heat shock depends upon a novel 6-amino-acid element within Rat8p. This motif is not required under normal growth conditions or following ethanol shock. These studies suggest that the molecular mechanism responsible for the defect in export of heat shock mRNAs in heat-shocked rip1Delta cells is dissociation of Rat8p from NPCs. These studies also suggest that both nuclear pores and Rat8p have features not required for mRNA export in growing cells but which enhance the ability of mRNAs to be exported following heat shock.  相似文献   

18.
19.
20.
J L Zimmerman  W Petri  M Meselson 《Cell》1983,32(4):1161-1170
During normal development in D. melanogaster, messenger RNAs for three of the seven heat shock proteins (hsp83, hsp28 and hsp26) accumulate in adult ovaries and are abundant in embryos until blastoderm. The three mRNAs appear to originate in nurse cells and subsequently pass, during stages 10-11, into the oocyte. Little if any of the four other heat shock mRNAs is present in unshocked ovaries or embryos at any time examined. Pre-blastoderm embryos fail to accumulate these heat shock mRNAs even if subjected to heat shock. The accumulation in normal oogenesis of mRNAs for only three of the seven heat shock proteins indicates the existence of differential, possibly multiple controls of heat shock gene expression, and suggests that heat shock proteins hsp83, hsp28 and hsp26 function in the oocyte or early embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号