首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of cationic allyl complexes of Pd(II) derived from the diterpene carvone have been synthesised and characterised using the chelating ligands, bipyridine, 1,8-phenanthroline, neocuproin, S,S (-)-Chiraphos and R (+)-Binap as co-ligands. These complexes can be readily converted to new organic products in which one C---H bond of the allyl methyl has been substituted. The structure of a bipyridyl complex as its tetraphenyl borate salt has been determined via X-ray diffraction. 2-D NOESY studies on the Chiraphos and Binap complexes are reported. The Binap, but not the Chiraphos, complex reveals η33η3 isomerisation at ambient temperature.  相似文献   

2.
Use of ionizing radiation is essential for the management of many human cancers, and therapeutic hyperthermia has been identified as a potent radiosensitizer. Radiation therapy combined with adjuvant hyperthermia represents a potential tool to provide outstanding local-regional control for refractory disease. (Z)-(±)-2-(N-Benzylindol-3-ylmethylene)quinuclidin-3-ol (2) and (Z)-(±)-2-(N-benzenesulfonylindol-3-ylmethylene)quinuclidin-3-ol (4) were initially identified as potent thermal sensitizers that could lower the threshold needed for thermal sensitivity to radiation treatment. To define the structural requirements of the molecule that are essential for thermal sensitization, we have synthesized and evaluated a series of (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one (9), and (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol (10) analogs that incorporate a variety of substituents in both the indole and N-benzyl moieties. These systematic structure–activity relationship (SAR) studies were designed to further the development and optimization of potential clinically useful thermal sensitizing agents. The most potent analog was compound 10 (R1 = H, R2 = 4-Cl), which potently inhibited (93% inhibition at 50 μM) the growth of HT-29 cells after a 41 °C/2 h exposure.  相似文献   

3.
Many terpenes are used therapeutically, and as flavor and fragrance materials. (R)-(-)-Carvone, the main constituent of spearmint oil, and (S)-(+)-carvone, found as major component of caraway and dill seed oils, have several applications and are used in cosmetic, food, and pharmaceutical preparations. In this study, the effect of enantiomers of carvone on the central nervous system (CNS) was evaluated in mice. The LD50 value was 484.2 mg/kg (358.9-653.2) for (S)-(+)-carvone, and 426.6 (389.0-478.6) mg/kg for (R)-(-)-carvone. Both enantiomers caused depressant effects, such as decrease in the response to the touch and ambulation, increase in sedation, palpebral ptosis, and antinociceptive effects. (S)-(+)- and (R)-(-)-carvone caused a significant decrease in ambulation. (R)-(-)-Carvone appeared to be more effective than its corresponding enantiomer at 0.5 and 2.0 h after administration. However, (S)-(+)-carvone was slightly more potent at 1 h. In potentiating pentobarbital sleeping time, (R)-(-)-carvone was more effective than (S)-(+)-carvone at 100 mg/kg, but was less potent at 200 mg/kg compared to the (+)-enantiomer, indicating a sedative action. (S)-(+)-Carvone at the dose of 200 mg/kg increased significantly the latency of convulsions induced by PTZ and PIC, but (R)-(-)-carvone was not effective against these convulsions. These results suggest that (S)-(+)-carvone and (R)-(-)-carvone have depressant effect in the CNS. (S)-(+)-Carvone appears to have anticonvulsant-like activity.  相似文献   

4.
The coordination chemistry of the new bidentate nitrogen ligands 8-(2-pyridyl)quinoline (8-PQ) and 8-(6-methyl-2-pyridyl)quinoline (Me-8-PQ) towards palladium and platinum has been studied. Several (NN)Pd(R)Cl and (NN)Pd(alkene) complexes have been synthesized. The complex (8-PQ)Pd(Me)Cl has been characterised by a single crystal X-ray determination (crystal data triclinic space group ). A fast CO insertion occurs into the palladium-carbon bond of the complexes (NN)Pd(Me)Cl providing the (NN)Pd(C(O)Me)Cl complexes. For (8-PQ)Pd(C(O)Me)Cl an X-ray structure determination has been carried out (crystal data: monoclinic space group P21/c with a=9.084(4), B=10.179(3), C=16.400(3) Å, β=95.59(2)°, V=1509.2(9) Å3, R=0.043, Z=4). Unexpected in both molecular structures is the large dihedral angle between the plane of the bidentate nitrogen ligand and the coordination plane of the palladium. Both bidentate coordinating ligands 8-PQ and Me-8-PQ show a relatively large bite angle. A monodentate coordination mode has been observed for the complexes (NN)M(PEt3)Cl2 (M=Pd, Pt), as the pyridyl group of the ligand is coordinated to the metal while the quinoline group is dissociated from the metal, which is shown in the X-ray structure determination for the complex (8-PQ)Pd(PEt3)Cl2 (crystal data: monoclinic space group P21/a with A=15.736(2), B=7.782(1), C=18.255(3) Å, β=102.98(1)°, V=2178.3(6) Å3, R=0.062, Z=4).  相似文献   

5.
The syntheses and reactions of two epoxyketoacids (methyl (Z)-9,10-epoxy-13-oxo-(E)-11-octadecenoate (IV) and methyl (E)-9,10-epoxy-13-oxo-(E)-11-octadecenoate (V)) are described. The synthetic method is based on the stereoselective oxidation of linoleic acid by soybean lipoxygenase to produce the corresponding 13-hydroperoxide. Reduction of the hydroperoxide with sodium borohydride followed by oxidation, esterification and epoxidation yielded the compounds IV and V with a global yield of 14% and 3%, respectively, referred to the diasteromerically pure isolated compounds. Confirmation of the structures was carried out by reduction of the ketone group with sodium borohydride and by the opening of the oxirane ring with methanolic boron trifluoride. The reduction of compounds IV and V with hydrogen mainly yielded the tetrahydrofuranoid fatty acid, methyl 10,13-epoxyoctadecanoate. This reaction may be considered a new procedure to obtain tetrahydrofuranoid fatty acids.  相似文献   

6.
The stereochemistry and mechanism in the reduction of the C–C double bond of carvone by the cultured cells of Astasia longa, a nonchlorophyllous cell line classified in Euglenales, was studied. The reduction of the C–C double bond of carvone with the cultured cells involved the anti-addition of hydrogen atom from the si face at the -position and the re face at the β-position of carbonyl group. Two different enone reductases were isolated from the cultured cells of A. longa. Both reductases catalyzed stereospecifically the anti-addition of hydrogen atoms from the si face at C-1 and the re face at C-6. However, one of the reductases participated in a hydrogen transfer of the pro-4R hydrogen of NADH to C-6 position of carvone and the other used the pro-4S hydrogen of NADH.  相似文献   

7.
The composition of the essential oils of individual plants of Thymus herba barona Lois. growing wild in Corsica was investigated by GC, GC/MS an carbon-13 NMR. Eight groups of essential oil were distinguished: (i) thymol, (ii) carvacrol, (iii) linalool, (iv) geraniol, (v) -terpenyl acetate, (vi) terpinen-4-ol, (vii) carvone and cis-dihydrocarvone. Three chemotypes -thymol, carvacrol and linalool – are common in the genus Thymus, two others – geraniol, -terpenyl acetate – are scarce, while the latest three ones – terpinen-4-ol, carvone and cis-dihydrocarvone are quite original. It is the first time that the cis-dihydrocarvone chemotype is described in the genus Thymus  相似文献   

8.
Microbial production of a 6-hydroxy-3-pyridylmethyl compound from 3-pyridylmethyl compound was investigated. The hydroxylation of 3-(methylaminomethyl)pyridine to 5-(methylaminomethyl)-2(1H)-pyridinone, tautomer of 2-hydroxy-5(methylaminomethyl)pyridine, by resting cells ofArthrobacter ureafaciens JCM3873 was found to proceed regio- and chemo-selectively with an almost quantitative yield. The addition of molybdate ion and nicotine as an inducer to the culture medium was required for the preparation of cells containing high hydroxylation activity. The optimal temperature and pH for the hydroxylation by using resting cells were 35°C and around 7, respectively. This hydroxylation enzyme does undergo inhibition by the substrate. The inhibitory effect could be eliminated by stepwise feeding of the substrate. Under adequate conditions, 23 mg/ml of 5-(methylaminomethyl)-2(1H)-pyridinone was produced with a molar yield of nearly 100% from 3-(methylaminomethyl)pyridine.  相似文献   

9.
Chemo-enzymatic approaches for the synthesis of the family of aromatase inhibitory drug via lipase-catalyzed kinetic resolution of (±)-4-cyano-4-phenyl-1-hexanol (2) as appropriate precursors were described. Enzymatic transesterification of primary alcohol (±)-2 using Pseudomonas cepacia (Amano PS, PCL) provided the enantiopure alcohol (R)-(−)-2 with 99% ee at conversion of 86%, while that of (±)-2 using Pseudomonas fluorescens (Amano AK, LAK) provided the (S)-(+)-2 with 96% ee at conversion of 86%. Chemical transformation of substrate (R)-(−)-2 gave (R)-(+)-aminoglutethimide (1) in enantioselectively high yield.  相似文献   

10.
Optimisation of a novel series of osteoclast ATPase inhibitors led to (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pentadienamide (1) that was the most potent compound in an in vitro osteoclast ATPase assay and in human bone resorption assays. Two of the possible geometric isomers have also been prepared and shown to be significantly less potent than 1.  相似文献   

11.
The heterocyclic analogue of (S)-glutamic acid, (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [(S)-AMPA] is a potent and selective AMPA receptor agonist, whereas the enantiomeric compound, (R)-AMPA, is virtually inactive. We have previously characterized (RS)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(RS)-APPA] as a partial AMPA receptor agonist showing about 60% of the efficacy of (RS)-AMPA. This partial agonism produced by (RS)-APPA is, however, only apparent, since resolution of (RS)-APPA has now been shown to provide the full AMPA receptor agonist, (S)-APPA, whereas (R)-APPA is a acid (non-NMDA) receptor antagonist showing preferential AMPA blocking effects. In agreement with classical theories for competitive interaction between agonists and antagonists, the efficacy of depolarizations produced by (S)-APPA in the rat cortical wedge preparation was shown to be progressively reduced with increasing molar ratios of (R)-APPA/(S)-APPA. These compounds and the competitive antagonists (RS)-2-amino-3-(3-carboxymethoxy-5-methyl-4-isoxazolyl)propionic acid [(RS)-AMOA], 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo(f)quinoxalin-2,3-dione (NBQX) were also tested in [3H]AMPA and [3H]CNQX binding systems, the latter ligand being used in the absence or presence of thiocyanate ions. On the basis of these studies it is suggested that (RS)-AMPA and the AMPA agonist (S)-APPA interact with a high-affinity receptor conformation, whereas the competitive antagonists (RS)-AMOA and (R)-APPA, derived from these agonists, preferentially bind to a low-affinity AMPA receptor conformation. The competitive antagonists, CNQX and NBQX which are structurally unrelated to (RS)-AMPA or (RS)-APPA, do not seem to discriminate between these two AMPA receptor conformations. The modified [3H]CNQX binding assay containing thiocyanate ions was shown to provide receptor affinity data for AMPA receptor agonists as well as antagonists, which correlate with the potencies of these compounds in the cortical wedge preparation. Using autoradiographic techniques, (S)- and (R)-APPA were shown to exhibit significantly different absolute potencies as inhibitors of [3H]AMPA binding in a number of regions of the rat brain.  相似文献   

12.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

13.
The biotransformation of the fungistatic agent (R)-(+)-1-(4′-chlorophenyl)propan-1-ol (1) by the phytopathogen Botrytis cinerea has been studied. The main reaction pathways involved hydroxylations on several positions as well as condensations with secondary metabolites of the fungus. The antifungal activity of compound 1 against B. cinerea has also been determined.  相似文献   

14.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


15.
(E)-9-(1-pyrenyl)-4-hydroxynon-2-enal (FHNE), a fluorescent probe of (E)-4-hydroxynon-2-enal (HNE) is synthesised in seven steps and in 35% overall yield, starting from commercially available 1-pyrencarboxyaldehyde. When incubated with cultured HeLa cells this fluorescent probe penetrates cells and particularly concentrates in the region surrounding the nucleus. As the parent compound, HNE it is able to induce the activation of heat shock factor (HSF) and it is able to induce the binding of HSF to heat shock element (HSE).  相似文献   

16.
Whole cells of Rhodococcus equi A4 chemoselectively hydrolyzed methyl (R,S)-3-benzoyloxy-4-cyanobutanoate and methyl (R,S)-3-benzyloxy-4-cyanobutanoate into monomethyl (R,S)-3-benzoyloxyglutarate and monomethyl (R,S)-3-benzyloxyglutarate, respectively. The intermediates of the biotransformations were the corresponding amides which were also obtained using the purified nitrile hydratase from the same microorganism.  相似文献   

17.
The present article addresses the development of a microbial reaction system for the transformation of carveol to carvone, using whole cells of Rhodococcus erythropolis DCL14. This strain contains a NAD-dependent carveol dehydrogenase (CDH) when grown on limonene or on cyclohexanol. When a mixture of (−)-cis and (−)-trans-carveol is supplied, only (−)-trans-carveol is converted. Thus, besides (−)-carvone, pure (−)-cis-carveol can be obtained as product.

Initial experiments were performed batchwise using an aqueous system. (−)-Trans-carveol conversion rate gradually decreased during successive reutilisation batches. After the third reutilisation, activity was completely lost. Cells grown on cyclohexanol showed a slightly higher activity as compared to cells grown on (+)-limonene. A production of 4.3 μmol (−)-carvone formed per mg protein was achieved. A significant improvement with respect to initial reaction rate and productivity was obtained with aqueous–organic two-phase systems. Using a 5 to 1 buffer/iso-octane system, a 40% increase in the initial rate and a 16-fold increase of the production was observed. A further improvement resulted from increasing the volume of solvent (1 to 1 buffer/dodecane ratio). An initial reaction rate of 26 nmol/(min*mg protein) was observed, while production increased to 208 μmol (−)-carvone formed per mg protein. As in the single-phase system, reaction rate gradually decreased along the successive cell reutilisation batches. Addition of co-substrates for the regeneration of NAD did not prevent this decay. A simple downstream process was developed for the recovery of carvone and cis-carveol.  相似文献   


18.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

19.
The ability of dehydrated baker's yeast (Sigma, type II) to carry out oxidation reactions was investigated using a mixture of (S)- and (R)-enantiomers of 2-heptanol operated in a biphasic system with hexadecane as the organic layer. The commercial material could be used without preliminary growth provided the external trehalose was removed by centrifugation. It afforded a non enantiospecific biocatalyst with high activity, and 2-heptanone could be obtained in up to 10 g L-1 after 30 h reaction with a molar yield close to 100% with this material. Yeast cells harvested in the stationary phase of aerobic growth exhibited only a (S)-oxidation activity, which gave a process for the resolution of (R)-enantiomers of secondary alcohols. These results led to the assumption that at least two enzymes were acting in this process, one of them probably being the yeast alcohol dehydrogenase (YADH), which is known to exhibit a (S)-enantioselectivity in Saccharomyces cerevisiae.  相似文献   

20.
-erythro-5,6,7,8-Tetrahydrobiopterin (BH4), which is the cofactor of aromatic amino acid hydroxylases, plays an important role in the biosyntheses of monoamine neurotransmitters. BH4 exists as natural (6R)- and unnatural (6S)-isomers. In our previous reports, only (6R)-isomer significantly stimulated cofactor activity for tyrosine, tryptophan and phenylalanine hydroxylases (TH, TPH, PAH) in whole animals or in tissue slices. In this study we have compared the in situ cofactor activity on TH between natural (6R)- and unnatural (6S)-isomers in clonal cells. We have transfected human TH type 2 cDNA into the normal rat kidney (NRK) fibroblasts. These cells expressed TH protein, but had neither DOPA decarboxylase (DDC) nor BH4. Thus, TH activity was observed only in the presence of exogenous BH4. We compared the difference in in situ DOPA formation by TH activity in the presence of (6R)- or (6S)-BH4 in the human TH-transfected cells. The effect of exogenous BH4 was also compared between (6R)- and (6S)-isomers in rat pheochromocytoma PC12h cells, which contained approximately 100 μM endogenous (6R)-BH4. The rate of uptake of both BH4 isomers into these cells increased in proportion to the pterin cofactor concentrations in the incubation medium up to 400 μM but was nearly saturated at 1 mM BH4. TH-transfected NRK fibroblasts formed DOPA only in the presence of exogenously added (6R)- or (6S)-BH4 dose-dependently and released DOPA into the medium. At a saturating concentration of 1 mM, (6R)-BH4 was approximately three times as active as (6S)-BH4. In contrast, in PC12h cells which contained endogenous (6R)-BH4 (approximately 100 μM), exogenous (6R)-BH4 activated DOPA formation maximally at 500 μM about 10-fold, while (6S)-BH4 activated it only slightly, about 2.5-fold. These results suggest that (6S)-isomer has lower cofactor activity with TH in the cells than (6R)-isomer. This TH transfected fibroblasts should be useful to assess cofactor activities of tetrahydropteridines in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号