首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P NMR spectra of isolated rabbit bladder and uterus were obtained under steady-state arterial perfusion in vitro at rest and while stimulated. The spectra contained seven major peaks: phosphoethanolamine, sn-glycero(3)phosphocholine, inorganic phosphate (Pi), phosphocreatine, and the gamma, alpha, and beta peaks of ATP. Chemical analyses, high-pressure liquid chromatography, and NMR spectroscopy of aqueous extracts of bladders identified a number of other components that also made contributions to, but were not resolved in, the spectra of the intact tissues: UTP, GTP, UDP-Glc, NAD+, phosphocholine, and sn-glycero(3)phosphoethanolamine. Intracellular pH of unstimulated bladders and uteri, measured from the chemical shift of the Pi peak, was 7.10 +/- 0.09 S.D. and 7.01 +/- 0.12 S.D., respectively. The chemical shift of the beta-ATP peak in the smooth muscles was significantly upfield (-0.3 ppm) compared to the chemical shift observed in striated muscles (cat biceps and rat myocardium). An ADP peak was identified in stimulated and ischemic bladders. The chemical shifts of the nucleotides observed in perfused bladders were calibrated as a function of free Mg2+ concentration in solutions containing phosphocreatine, Pi, ADP, and ATP at an ionic strength of 180 mM. We derived the following estimates for the intracellular free Mg2+ concentration: uterus, 0.40 mM; unstimulated bladder, 0.46 mM; stimulated and ischemic bladder, 0.50 mM (from the ATP chemical shift) and 0.45 (from the ADP chemical shift); cat biceps, 1.5 mM; and rat myocardium, 1.4 mM.  相似文献   

2.
A quantitative analysis of the phosphorus-31 NMR spectra of excised perfused rat liver has been carried out at 80.9 MHz using a 30-mm sample cell. The results indicate that in liver from fed rats, all intracellular ATP is detected by NMR. In contrast, only the cytosolic fractions of Pi and ADP can be observed as indicated by careful analysis of spectra obtained from perchloric acid liver extracts and intact liver under valinomycin perfusion. In well-oxygenated perfused liver the ATP concentration is 7.4 mM. Values of 5.3 mM and 0.9 mM are found respectively for Pi and ADP concentrations in the cytosolic compartment. Cytosolic pH value (pHi) is 7.25 +/- 0.05 and free magnesium concentration 0.5 mM. Addition of 70 mM (0.4%) ethanol to the perfusate of a fed rat liver induces 25% and 38% reduction of ATP and Pi levels, respectively. A large amount of sn-glycerol 3-phosphate is synthesized (up to 11 mM) in the cytosol. After ethanol withdrawal, a large overshoot in cytosolic Pi is observed, which is indicative of a net uptake of Pi across the plasma membrane that occurred during ethanol oxidation. No significant pH variation is observed during ethanol infusion. In perfused liver of rats subjected to 48-h fasts, the concentrations of cytosolic phosphorylated metabolites are 5.3 mM, 0.8 mM and 11.5 mM for ATP, ADP and Pi, respectively. The perfusion of the liver with 70 mM ethanol does not change the adenine nucleotide levels, while the Pi content is decreased by 10%. During a 4-min hypoxia, induced by reducing the perfusion flow rate from 12 ml to 3 ml min-1 (100 g body weight)-1, ATP concentration decreases to 5.8 mM in the fed rat liver. Cytosolic Pi and ADP increase to 8.7 mM and 1.6 mM, respectively. The cytosolic pH evolves to more acidic values and reaches 7.02 +/- 0.05 at the end of the 4-min hypoxic period.  相似文献   

3.
Superfused porcine carotid artery segments (approximately 7 cm lengths) were analyzed by 31P-NMR spectroscopic methods to characterize the 31P spectrum of arterial smooth muscle and to determine the influence of passive stretch (intraluminal pressurization, 95-100 mmHg) on cellular phosphatic metabolite levels, intracellular pH and free magnesium concentration ([Mg2+free]i). Equilibrated, single, intact arteries were studied under steady-state, constant flow conditions at 37 degrees C. Phosphoethanolamine, phosphocholine, inorganic phosphate (Pi), phosphocreatine (PCr) and nucleoside triphosphates (NTP), primarily ATP, were the principle metabolites detected in the 31P-NMR spectrum of intact arterial smooth muscle. The concentration of these metabolites and intracellular pH, as determined from the referenced chemical shift of Pi, were unaffected by pressurization. The PCr:Pi ratios determined for nonpressurized (flaccid) and pressurized arteries were 1.2 +/- 0.1 and 1.3 +/- 0.3, respectively. Intracellular pH averaged 7.02 +/- 0.02 (mean +/- 1 S.D.) for flaccid arteries vs. 7.03 +/- 0.05 for pressurized arteries. The upfield chemical shift of the beta-ATP peak, which has been described in other types of smooth muscle, was also observed in these experiments. Interestingly, pressurization significantly shifted the resonance position of this peak, which was interpreted to represent a change in [Mg2+free]i. The average [Mg2+free]i of flaccid artery preparations was computed to be 0.54 +/- 0.03 x 10(-3) M, as compared to 0.99 +/- 0.10 x 10(-3) M for pressurized arteries. This change in [Mg2+free]i was evident within the first hour following pressurization and persisted thereafter. These findings suggest that altering the resting length of vascular smooth muscle produces a change in [Mg2+free]i. This shift in free Mg2+ levels may act as a metabolic signal triggering a change in vascular smooth muscle metabolism, an effect which has been reported to occur in smooth muscle in response to stretch.  相似文献   

4.
The interplay of inorganic phosphate (Pi) with other ligands such as Mg(2+), ADP, ATP, and Ca(2+) on the activation of 2-oxoglutarate dehydrogenase complex (2-OGDH) in both isolated enzyme complex and mitochondrial extracts was examined. Pi alone activated the enzyme, following biphasic kinetics with high (K(0.5) = 1.96+/-0.42 mM) and low (K(0.5) = 9.8+/-0.4 mM) affinity components for Pi. The activation by Pi was highly pH-dependent; it increased when the pH raised from 7.1 to 7.6, but it was negligible at pH values below 7.1. Mg-Pi and Mg-ADP, but not Mg-ATP, were more potent activators of 2-OGDH than free Pi and free ADP. ATP inhibited the 2-OGDH activity by chelating the free Mg(2+) and also as a Mg-ATP complex. With or without Mg(2+), ADP, and Pi activated the 2-OGDH by increasing the affinity for 2-OG and the V(m) of the reaction; ATP diminished the V(m), but it increased the affinity for 2-OG in the mitochondrial extract. Pi did not modify the 2-OGDH activation by Ca(2+). The results above mentioned were similar for both preparations, except for hyperbolic kinetics in the isolated enzyme and sigmoidal kinetics in the mitochondrial extracts when 2-oxoglutarate was varied. The data of this study indicated that physiological concentrations of Pi may exert a significant activation of 2-OGDH, which was potentiated by Mg(2+) and high pH, but surpassed by ADP.  相似文献   

5.
The quantitative analysis of the mobile high-energy phosphorus metabolites in isovolumic Langendorff-perfused rabbit hearts has been performed by 31P NMR utilizing rapid pulse repetition to optimize sensitivity. Absolute quantification required reference to an external standard, determination of differential magnetization saturation and resonance peak area integration by Lorentzian lineshape analysis. Traditionally accepted hemodynamic indices (LVDP, dp/dt) and biochemical indices (lactate, pyruvate) of myocardial function were measured concomitantly with all NMR determinations. Hemodynamically and biochemically competent Langendorff-perfused rabbit hearts were found to have intracellular PCr, ATP, GPC, and Pi concentrations of 14.95 +/- 0.25, 8.08 +/- 0.13, 5.20 +/- 0.58 and 2.61 +/- 0.47 mM respectively. Intracellular pH was 7.03 +/- 0.01. Cytosolic ADP concentration was derived from a creatine kinase equilibrium model and determined to be approximately 36 microM. Reduction of perfusate flow from 20 to 2.5 ml/min demonstrated statistically significant decreases in PCr, ATP, and pH as well as an increase in Pi that correlated closely with the independent hemodynamic and biochemical indices of myocardial function. The decrease in ATP and PCr concentrations precisely matched the increase in Pi during reduced flow. These results constitute the first quantitative determination of intracellular metabolite concentrations by 31P NMR in intact rabbit myocardium under physiologic and low flow conditions.  相似文献   

6.
ATP and pyrophosphate at high concentration (greater than 1 mM) inhibited photophosphorylation of isolated spinach chloroplasts in the normal salt medium and did not cause stimulation of electron transport. The inhibition of photophosphorylation by ATP or pyrophosphate was shown to be abolished by the addition of excess MgCl2, ADP and phosphate. It has been demonstrated that the rates of photophosphorylation in the absence and presence of ATP or pyrophosphate are determined similarly by the concentrations of magnesium-ADP (Mg - ADP-) and magnesiumphosphate (Mg - Pi) complexes. It is highly probable that Mg - ADP- and Mg - Pi, but not free ADP and free phosphate, are the active form of the substrates of photophosphorylation. This is in support of the view that ATP inhibits photophosphorylation by decreasing the concentration of Mg2+ which is available for the formation of the complex with ADP and phosphate.  相似文献   

7.
D W Jung  L Apel  G P Brierley 《Biochemistry》1990,29(17):4121-4128
The concentration of free Mg2+ in the matrix of isolated heart mitochondria has been monitored by using the fluorescent probe furaptra (mag-fura-2). Beef heart mitochondria respiring in a KCl medium in the absence of external Mg2+ maintain free matrix Mg2+ near 0.50 mM. Addition of Pi under these conditions decreases free Mg2+ by 0.12-0.17 mM depending on the substrate. This decrease in free Mg2+ appears to reflect changing ligand availability in the matrix. The decrease is prevented when the Pi transporter is blocked by mersalyl. Addition of ADP to initiate state 3 respiration causes a marked increase in free matrix Mg2+ (0.1-0.2 mM) that persists as long as ATP formation is taking place; free Mg2+ then returns to the base level. This cyclic change is blocked by oligomycin and carboxyatractyloside and appears to reflect to a large extent the decrease in matrix Pi that accompanies oxidative phosphorylation. Exchange of external ADP for matrix ATP may also contribute to the increase in free matrix Mg2+. Addition of an uncoupler promotes anion efflux and increases free matrix Mg2+. Similar changes in free Mg2+ on addition of Pi, ADP, or uncoupler are seen when extramitochondrial Mg2+ is buffered from 0.5 to 2 mM, but the basal free matrix Mg2+ increases as external Mg2+ concentration increases in this range. Free matrix Mg2+ also increases when total mitochondrial Mg2+ is increased by respiration-dependent uptake in the presence of Pi. It is concluded that matrix free Mg2+ changes significantly with changing ligand availability and that such changes may contribute to the regulation of Mg2(+)-sensitive matrix enzymes and membrane transporters.  相似文献   

8.
The effects of fructose on the intracellular ionic changes evoked by anoxia were studied in freshly isolated rat hepatocytes maintained in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer (KHB). Cytosolic free calcium (Ca2+i) was measured with aequorin, intracellular sodium (Na+i) with sodium-binding benzofuran isophthalate, intracellular pH (pHi) with 2'-7'-bis(carboxyethyl)-5,6-carboxyfluorescein, lactic dehydrogenase (LDH) by the increase in NADH absorbance during lactate oxidation to pyruvate, and viability by trypan blue exclusion. ATP, Pi, phosphomonoesters, and the cell phosphorylation potential assessed by the reciprocal of the Pi/ATP ratio were measured by 31P NMR spectroscopy in real time. Intracellular free Mg2+ (Mg2+i) was calculated from the chemical shift of beta-ATP relative to alpha-ATP in the NMR spectra. Anoxia was induced by perfusing the cells with KHB saturated with 95% N2, 5% CO2. When the perfusate contained 5 mM glucose as substrate, anoxia caused a fall in ATP, a rise in Pi, and in the Pi/ATP ratio, a biphasic increase in Ca2+i that reached 1.45 +/- 0.42 microM and a 6-fold increase in LDH. When 15 mM fructose was used as substrate during the anoxic period, intracellular ATP decreased much faster than with glucose, Pi did not increase, and the concentration of phosphomonoesters increased 2.5-fold. During the first hour of anoxia, the Pi/ATP ratio was higher in the fructose than in the glucose group indicating that the hepatocyte phosphorylation potential and ATP decreased faster and to lower levels with fructose than with glucose. On the other hand, ATP and the phosphorylation potential of the fructose group increased during the second hour of anoxia, in contrast to their continuous decline in the glucose group. The major surge in Ca2+i was depressed 52% when glucose was replaced by fructose: Ca2+i reached only 0.7 +/- 0.2 microM instead of 1.45 +/- 0.42 microM (p less than 0.01). Anoxia also caused an increase in Na+i and an intracellular acidosis. The rise in Na+i was significantly greater with fructose than with glucose. Na+i rose from a control value of 15.9 +/- 2.4 to 32.2 +/- 0.4 mM with glucose and to 48.7 +/- 0.7 mM with fructose (p less than 0.001). The decrease in pHi from a control value of 7.43 +/- 0.03 was consistently greater and faster with fructose than with glucose: 6.59 +/- 0.03 and 7.04 +/- 0.01, respectively. At the same time, fructose completely suppressed LDH release and reduced the loss of viability produced by anoxia from 27.7 +/- 2.9 to 14 +/- 3.1% (p less than 0.05).  相似文献   

9.
Rabbit hearts were perfused with Krebs-Henseleit bicarbonate buffer supplemented with 15 mM glucose and 10 mU/ml of insulin +/- Pi. At the end of 60 min the hearts were freeze-clamped and the content of ATP, creatine phosphate, creatine, lactate, pyruvate, DHAP and 3-P glycerate were determined enzymatically in neutralized perchloric acid tissue extracts. The free cytosolic ADP and Pi and the cytosolic NAD+ redox and phosphorylation potentials were calculated from the measured metabolite concentrations. Pi free perfusion resulted in increased creatine, free cytosolic ADP and cytosolic phosphorylation potential, decreased calculated free Pi and no change in cardiac ATP and creatine phosphate content. The increase in the cytosolic phosphorylation potential was due to the lowering of cytosolic free Pi. The increase in ADP was due to the increase in creatine. The increase in creatine appeared to be due to an inhibition of creatine efflux from the heart during Pi free perfusion which was mediated by an enhanced Na+ electrochemical gradient.  相似文献   

10.
Metabolic control of oxidative metabolism was studied in perfused rat liver by means of phosphorus magnetic resonance spectroscopy. Oxygen consumption, ATP, and Pi were measured with different rates of gluconeogenesis and urea synthesis by varying concentrations of the substrates in the perfusate. Five levels of oxygen consumption (VO2) were obtained: an average control value of 1.94 +/- 0.14 and 2.93 +/- 0.25, 3.29 +/- 0.46, 3.85 +/- 0.26, and 4.18 +/- 0.56 mumol/min/g liver (mean +/- S.D., n = 6). The corresponding ATP concentrations were 2.51 +/- 0.20, 2.39 +/- 0.08, 2.24 +/- 0.09, 2.13 +/- 0.12, and 1.91 +/- 0.13 mM. Pi increased stoichiometrically with the decrease in ATP. Free Pi (Pif) was calculated as NMR-visible Pi in control plus -delta ATP (1.94 mM + (-delta ATP]. The kinetic relationship of oxidative phosphorylation as a function of Pif followed a Michaelis-Menten type of equation: VO2 = 5.55/(1 + 0.24/[( Pif] - 1.81]. The observed Km value for Pi of 0.24 mM approximates the reported Km value in isolated mitochondria of 1 mM. The free Pi concentration of 1.94 mM is in the range of the Km value, while the free ADP concentration of 200 microM exceeds the Km value of 20 microM. Therefore, it is suggested that Pi play a major role in the regulation of mitochondrial oxidative phosphorylation in combined urea synthesis and gluconeogenesis.  相似文献   

11.
H Degani  A Shaer  T A Victor  A M Kaye 《Biochemistry》1984,23(12):2572-2577
Changes in the concentrations of high-energy phosphate metabolites were measured by 31P NMR spectroscopy of surviving rat uteri from 0-48 h following estrogen administration. Concentrations (millimoles per kilogram wet weight) of these metabolites in the untreated immature uterus, measured at 4 degrees C, were found to be the following: creatine phosphate (CP), 2.1 +/- 0.2; nucleoside triphosphates, mainly adenosine 5'-triphosphate (ATP), 4.6 +/- 0.4; phospho monoesters, primarily sugar phosphates (SP), 5.4 +/- 0.7; and inorganic phosphate (Pi), 0.8 +/- 0.4. Adenosine 5'-diphosphate (ADP) concentration was estimated to be approximately 40 mumol/kg wet weight from the assumed equilibrium of the creatine kinase reaction. The concentration of CP, and to lesser extent ATP and SP, declined within the first 1.5-3 h after injection of 17 beta-estradiol, returned to control values between 6 and 12 h, and then increased, reaching maximal concentrations at 24 h. From the fractions of the total soluble ATP in free and Mg2+-bound forms, [free Mg2+] in the untreated uterus was estimated to be 0.2-0.4 mmol/kg wet weight. An increase in [free Mg2+] in the uterus was detected 1.5 h after estrogen injection. A subsequent parallel increase in the ratio of ATP to CP concentrations suggests that estrogen can also affect the apparent creatine kinase equilibrium by modulating [free Mg2+].  相似文献   

12.
The effects of 48 h fasting, administration of ethanol or 2,4-dinitrophenol, on the phosphorus-containing metabolites in liver in vivo have been determined utilizing 31P nuclear magnetic resonance spectroscopy. These measurements were combined with determinations of metabolite concentrations in livers which were freeze-clamped immediately after the NMR measurements were completed. Administration of sub-lethal amounts of dinitrophenol dramatically decreased ATP and increased Pi concentrations in liver in vivo as indicated by a 2.7-fold increase in the NMR-derived [Pi]/[ATP] ratio. Ethanol administration to fed animals increased the NMR-derived [Pi]/[ATP] ratio 27%; in contrast, the same amount of ethanol administered to fasted animals decreased the NMR-derived [Pi]/[ATP] ratio 30%. The NMR visible Pi and ADP represent about 50% and 15% of the total Pi and ADP, respectively. The phosphorylation potentials calculated from the NMR visible Pi and ADP were an order of magnitude higher than those obtained from metabolite concentrations in freeze-clamped tissue. There was no apparent correlation between the phosphorylation potentials derived from either the NMR spectral analyses or from metabolite concentrations and the hepatic [NAD+]/[NADH] ratio. The chemical shift of Pi indicated that ethanol administration elicited a decrease in pH of 0.1 unit in liver in vivo. Hepatic free [Mg2+] was increased 21% in fasted animals, but was unaffected by ethanol administration.  相似文献   

13.
Because Mg2+ and Li+ ions have similar chemical properties, we have hypothesized that Li+/Mg2+ competition for Mg2+ binding sites is the molecular basis for the therapeutic action of lithium in manic-depressive illness. By fluorescence spectroscopy with furaptra-loaded cells, the free intracellular Mg2+ concentration within the intact neuroblastoma cells was found to increase from 0. 39 +/- 0.04 mM to 0.60 +/- 0.04 mM during a 40-min Li+ incubation in which the total intracellular Li+ concentration increased from 0 to 5.5 mM. Our fluorescence microscopy observations of Li+-free and Li+-loaded cells also indicate an increase in free Mg2+ concentration upon Li+ incubation. By 31P NMR, the free intracellular Mg2+ concentrations for Li+-free cells was 0.35 +/- 0. 03 mM and 0.80 +/- 0.04 mM for Li+-loaded cells (final total intracellular Li+ concentration of 16 mM). If a Li+/Mg2+ competition mechanism is present in neuroblastoma cells, an increase in the total intracellular Li+ concentration is expected to result in an increase in the free intracellular Mg2+ concentration, because Li+ displaces Mg2+ from its binding sites within the nerve cell. The fluorescence spectroscopy, fluorescence microscopy, and 31P NMR spectroscopy studies presented here have shown this to be the case.  相似文献   

14.
Stimulation of insulin secretion in the pancreatic beta-cell by a fuel such as glucose requires the metabolism of the fuel and is accompanied by increases in oxygen consumption and intracellular free Ca2+. A very early signal for these events could be a decrease in the cytosolic ATP/ADP ratio due to fuel phosphorylation. To test this hypothesis the regulation of free Ca2+ was evaluated in permeabilized RINm5F insulinoma cells that sequester Ca2+ and maintain a low medium free Ca2+ concentration (set point), between 100 and 200 nM, in the presence of Mg2+ and ATP. ATP, creatine, creatine phosphate, and creatine phosphokinase were added to the media to achieve various constant ratios of ATP/ADP. Free Ca2 was monitored using fura-2. The results demonstrated that the steady-state free Ca2+ concentration varied inversely with the ATP/ADP ratio and orthophosphate (Pi) levels. In contrast, no correlation between free Ca2+ and the phosphorylation potential (ATP/ADP.Pi) was found. Regulation of the Ca2+ set point by the ATP/ADP ratio was observed at ratios between 5 and 50 and at Pi concentrations between 1 and 7 mM, irrespective of whether mitochondria were participating in Ca2+ sequestration or were inhibited. Increasing the ATP/ADP ratio stimulated Ca2+ uptake by the nonmitochondrial pool but did not modify Ca2+ efflux. Glucose 6-phosphate (1 mM) had no effect on the Ca2+ set point. The data suggest that variations in the cytosolic ATP/ADP ratio induced by fuel stimuli may regulate Ca2+ cycling across nonmitochondrial compartments and the plasma membrane by modulating the activity of Ca2+ -ATPases. A mechanism linking fuel metabolism and cytosolic ATP/ADP ratio to activation of the Ca2+ messenger system in pancreatic beta-cells is proposed.  相似文献   

15.
The isolated perfused rat pancreas was used to test the hypothesis that total cellular ATP or the ratio of ATP/free ADP plays the primary role in coupling intermediary metabolism to the biophysical events that are the basis of glucose-stimulated insulin release. The pancreas was preperfused for 20 min with 4.0 mM of a physiological mixture of 20 amino acids plus 4.2 mM glucose, and insulin release was then stimulated for 150 s by suddenly increasing the glucose to 8.3 mM. The pancreas was sampled at 24, 48, 72, and 150 s after the switch. The content of total ATP, ADP, AMP, Pi, phosphocreatine, and creatine were measured in beta-cell enriched cores of pancreatic islets microdissected from freeze-dried pancreas cryostat sections. Metabolites were measured by quantitative histochemical enzymatic cycling techniques. Modeling studies were carried out to assess the impact of biochemical analytical results on the membrane potential of the beta-cells. The level of free ADP was calculated using the creatine kinase equilibrium reaction and an intracellular pH of 7.2. First phase insulin release was stimulated at least 10-fold with the maximum reached 45 s after adding high glucose. The biochemical analytical data demonstrate that the total cellular level of the putative coupling factor ATP and of the ratios ATP/free ADP and ATP/free ADP x Pi are not significantly influenced by a glucose level change that causes a more than 10-fold surge of insulin release. The strength and limitations of the present experimental strategy and the implications of the results for our understanding of metabolic coupling in glucose-stimulated insulin release are discussed.  相似文献   

16.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

17.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

18.
Using the 31P-NMR method, the composition of the pool of phosphate-containing metabolites in intact rat liver 72 hours following the blocking of protein biosynthesis by cycloheximide was studied. It was shown that during maximal inhibition, i.e., 2-3 hours after cycloheximide injection, the ATP concentration decreases approximately 5-fold, that of ADP and sugar phosphates--4- and 2-fold, respectively. The intracellular pH in hepatocytes was followed by measuring the chemical shift of the Pi signal. The reconstitution of intracellular pH after 2-3 hours is consistent with changes in the Pi level in hepatocytes. The experimental results were compared with the data of biochemical analysis. NMR seems to be a promising tool in the study of metabolism of various animal organs and tissues under physiological and pathological conditions.  相似文献   

19.
We developed a sedimentation assay to characterize and quantify the association of purified lysosomes to reconstituted microtubules (Mithieux, G., Audebet, C. and Rousset. B. (1988) Biochim. Biophys. Acta 969, 121-130). In the present work, we have examined the potential regulatory role of ATP and Mg2+ on the microtubule-lysosome interaction. The formation of microtubule-lysosome complexes takes place in the absence of Mg2+, but is activated by the addition of Mg2+; both the rate of the interaction and the amount of complexes formed are increased. The maximal effect is observed between 1.5 and 3.5 mM free Mg2+. Measured at the plateau of the interaction, the proportion of microtubules bound to lysosomes increases as a function of free Mg2+ concentration; at optimal concentration of free Mg2+, 90% of the microtubules present in the incubation mixture are bound to lysosomes. ATP induces a concentration-dependent inhibition of the formation of microtubule-lysosome complexes. The half-maximal effect is obtained at an ATP concentration of 0.83 +/- 0.11 mM (n = 7). The effect of ATP is not related to ATP hydrolysis, since ATP exerts its inhibitory action in the presence of EDTA. The ATP effect is mimicked by GTP, p[NH]ppA and tripolyphosphate, ADP and pyrophosphate, but not by AMP or phosphate. In the presence of 1 mM ATP, a Mg2+ concentration of 3 mM (corresponding to 2 mM free Mg2+) is required to overcome the inhibition caused by ATP; above 3 mM, Mg2+ exerts its activating effect. Since the modulating effects of ATP and Mg2+ are obtained at concentrations closed to those occurring in intact cells, we conclude that the regulation of the microtubule-lysosome interaction reported in this paper could be of physiological significance.  相似文献   

20.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号