共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP diphosphohydrolase (EC 3.6.1.5) catalyzes the hydrolysis of diphospho- and triphosphonucleosides and is sensitive to divalent cations. In this paper, we investigated the dependence of ATP hydrolysis on the concentration of free Mg2+ and Ca2+ and the cation ATP complexes. The enzyme was isolated from porcine zymogen granule membranes, solubilized in Triton X-100, and purified on a 5'-AMP-Sepharose 4B affinity column resulting in a 1500-fold purification. Free unprotonated ATP4- was hydrolyzed in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. When hydrolysis rate was measured at different concentrations of the cation-ATP complex at constant free cation concentrations, normal hyperbolic curves were obtained. In CaCl2, both Kapp and Vapp increased as free Ca2+ increased from 25 to 1000 microM. In MgCl2, Kapp increased and Vapp decreased as free Mg2+ increased from 25 to 500 microM. From the rapid equilibrium rate equation, Ks and Vmax values of the substrates were calculated. We found that free ATP4-, Ca-ATP2-, and Mg-ATP2- are substrates and free cations do not bind the enzyme. 相似文献
2.
Magnesium has been shown to modulate the Na+-stimulated release of Ca2+ (Na/Ca exchange) from brain mitochondria. The presence of 5 mM MgCl2 extramitochondrially inhibits the Na/Ca exchange as much as 70%. Additionally, Na+-stimulated Ca2+ release is enhanced by the presence of divalent chelators, this stimulation also being inhibited by the addition of excess Mg2+. The inhibitory effect of Mg2+ and the enhancement by chelating agents were both reversible. Heart mitochondria exhibit a similar enhancement of Na/Ca exchange by chelators and inhibition by MgCl2, though not as pronounced. 相似文献
3.
The differential scanning microcalorimetry and fluorescence methods, using probes ANS and pyrene, have been employed to study thermotropic behaviour of rat liver microsomes in the presence and absence of Mg2+. Addition of Mg2+ yields three partially reversible phase transitions at 18, 27 and 32 degrees C, respectively. A character of Mg2+-induced rearrangements in a membrane and their relation to a catalytic function of a cytochrome P-450-dependent enzymatic system is discussed. 相似文献
4.
We have investigated how Ca2+ or Mg2+ bound at the high-affinity cation binding site in F-actin modulates the dynamic response of these filaments to ATP hydrolysis by attached myosin head fragments (S1). Rotational motions of the filaments were monitored using steady-state phosphorescence emission anisotropy of the triplet probe erythrosin-5-iodoacetamide covalently attached to cysteine 374 of actin. The anisotropy of filaments containing only Ca2+ increased from 0.080 to 0.137 upon binding S1 in a rigor complex and decreased to 0.065 in the presence of ATP, indicating that S1 induced additional rotational motions in the filament during ATP hydrolysis. The comparable anisotropy values for Mg(2+)-containing filaments were 0.067, 0.137, and 0.065, indicating that S1 hydrolysis did not induce measurable rotational motions in these filaments. Phalloidin, a fungal toxin which stabilizes F-actin and increases its rigidity, increased the anisotropy of F-actin containing either Ca2+ or Mg2+ but not the anisotropy of the 1:1 S1-actin complexes of these filaments. Mg(2+)-containing filaments with phalloidin bound also displayed increased rotational motions during S1 ATP hydrolysis. A strong positive correlation between the phosphorescence anisotropy of F-actin under specific conditions and the extent of the rotational motions induced by S1 during ATP hydrolysis suggested that the long axis torsional rigidity of F-actin plays a crucial role in modulating the dynamic response of the filaments to ATP hydrolysis by S1. Cooperative responses of F-actin to dynamic perturbations induced by S1 during ATP hydrolysis may thus be physically mediated by the torsional rigidity of the filament. 相似文献
5.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km 0.25 μM, Vmax 24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely. 相似文献
6.
Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. 总被引:3,自引:0,他引:3
L R Jones 《Biochimica et biophysica acta》1979,557(1):230-242
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme. 相似文献
7.
8.
We developed a sedimentation assay to characterize and quantify the association of purified lysosomes to reconstituted microtubules (Mithieux, G., Audebet, C. and Rousset. B. (1988) Biochim. Biophys. Acta 969, 121-130). In the present work, we have examined the potential regulatory role of ATP and Mg2+ on the microtubule-lysosome interaction. The formation of microtubule-lysosome complexes takes place in the absence of Mg2+, but is activated by the addition of Mg2+; both the rate of the interaction and the amount of complexes formed are increased. The maximal effect is observed between 1.5 and 3.5 mM free Mg2+. Measured at the plateau of the interaction, the proportion of microtubules bound to lysosomes increases as a function of free Mg2+ concentration; at optimal concentration of free Mg2+, 90% of the microtubules present in the incubation mixture are bound to lysosomes. ATP induces a concentration-dependent inhibition of the formation of microtubule-lysosome complexes. The half-maximal effect is obtained at an ATP concentration of 0.83 +/- 0.11 mM (n = 7). The effect of ATP is not related to ATP hydrolysis, since ATP exerts its inhibitory action in the presence of EDTA. The ATP effect is mimicked by GTP, p[NH]ppA and tripolyphosphate, ADP and pyrophosphate, but not by AMP or phosphate. In the presence of 1 mM ATP, a Mg2+ concentration of 3 mM (corresponding to 2 mM free Mg2+) is required to overcome the inhibition caused by ATP; above 3 mM, Mg2+ exerts its activating effect. Since the modulating effects of ATP and Mg2+ are obtained at concentrations closed to those occurring in intact cells, we conclude that the regulation of the microtubule-lysosome interaction reported in this paper could be of physiological significance. 相似文献
9.
The fluorescence quenching properties of a series of brominated and iodinated pyrethroids have been used to study the binding of pyrethroids to the (Ca2(+) + Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum. It is suggested that binding at the lipid/protein interface of the ATPase is weak but that binding can occur at other (non-annular sites) on the ATPase. Pyrethroids containing either a brominated fatty acyl or iodinated alcohol moiety quench the tryptophan fluorescence of the ATPase, suggesting that the pyrethroids bound to the ATPase adopt a folded conformation with both the acid and alcohol moieties in contact with hydrophobic regions of the ATPase. Whereas effects of the pyrethroids on the activity of the ATPase in bilayers of dioleoylphosphatidylcholine are small, large increases are observed in the activity of the ATPase reconstituted into bilayers of the short-chain phospholipid, dimyristoleoylphosphatidylcholine (DMPC). The rate of phosphorylation of DMPC-ATPase by ATP is slow, but is increased on addition of pyrethroid. The level of phosphorylation of the ATPase by Pi is reduced on reconstitution into bilayers of DMPC, and this is also increased by addition of pyrethroid. 相似文献
10.
L S Bradham 《Biochimica et biophysica acta》1972,276(2):434-443
11.
E V Semenov S S Krylov A N Petrov 《Biulleten' eksperimental'no? biologii i meditsiny》1977,84(9):306-309
The effect of benactyzine (the central cholinolytic) in a dose of 40 mg/kg and arecoline (cholinomimetic) in a dose of 2.5 mg/kg on the activity of Mg2+-dependent ATP-ase and the content of Ca2+ and Mg2+ ions in the brain was studied in rats. It was shown that benactyzine and arecoline evoked a biphasic change in the activity of the enzyme and the electrolyte content. A conclusion was drawn that the enzyme inhibition was connected with the accumulation of Ca2+ ions in the brain tissue, whereas its inhibition--with the Mg2+ ion accumulation. It is supposed that throught these effects benactyzine and arecoline influenced the release and retention of the neuromediators in the tissue depot. 相似文献
12.
Calcium ions are frequently used second messengers in most living organisms. Members of the family of ryanodine sensitive calcium channels (ryanodine receptors, RyRs) are responsible for many important Ca(2+) signaling events in both excitable and nonexcitable cells. The biological activity of these membrane proteins is modulated and regulated by a great variety of different cellular and extracellular effectors, proteins, and small molecules. However, very little is still understood about how the modulators work on a molecular level. The very large size of more than 2 million Da per functional tetrameric RyR unit and its membrane association have made more detailed biochemical and structural analysis extremely challenging. 相似文献
13.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides. 相似文献
14.
Localization of (Ca2+ + Mg2+)-ATPase, Ca2+ pump and other ATPase activities in cardiac sarcolemma 总被引:2,自引:0,他引:2
N C Morcos 《Biochimica et biophysica acta》1982,688(3):747-756
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles. 相似文献
15.
Aracena P Sánchez G Donoso P Hamilton SL Hidalgo C 《The Journal of biological chemistry》2003,278(44):42927-42935
We have analyzed the effects of the endogenous redoxactive agents S-nitrosoglutathione and glutathione disulfide, and the NO donor NOR-3, on calcium release kinetics mediated by ryanodine receptor channels. Incubation of triad-enriched sarcoplasmic reticulum vesicles isolated from mammalian skeletal muscle with these three agents elicits different responses. Glutathione disulfide significantly reduces the inhibitory effect of Mg2+ without altering Ca2+ activation of release kinetics, whereas NOR-3 enhances Ca2+ activation of release kinetics without altering Mg2+ inhibition. Incubation with S-nitrosoglutathione produces both effects; it significantly enhances Ca2+ activation of release kinetics and diminishes the inhibitory effect of Mg2+ on this process. Triad incubation with [35S]nitrosoglutathione at pCa 5 promoted 35S incorporation into 2.5 cysteine residues per channel monomer; this incorporation decreased significantly at pCa 9. These findings indicate that S-nitrosoglutathione supports S-glutathionylation as well as the reported S-nitrosylation of ryanodine receptor channels (Sun, J., Xu, L., Eu, J. P., Stamler, J. S., and Meissner, G. (2003) J. Biol. Chem. 278, 8184-8189). The combined results suggest that S-glutathionylation of specific cysteine residues can modulate channel inhibition by Mg2+, whereas S-nitrosylation of different cysteines can modulate the activation of the channel by Ca2+. Possible physiological and pathological implications of the activation of skeletal Ca2+ release channels by endogenous redox species are discussed. 相似文献
16.
(1) At ATP concentrations up to 30 micrometer addition of 0.5 mM MgCl2 in the reaction mixture increases both the rate of formation and the steady-state level of the phosphoenzyme of the Ca2+-ATPase from human red cell membranes. Under these conditions Mg2+ has no effect on the rate of dephosphorylation, which remains slow. (2) In the presence of Mg2+ the rate of dephosphorylation is increased 5 to 10 times by high (1 mM) concentrations of ATP. (3) Provided Mg2+ has reacted with the phosphoenzyme, acceleration of dephosphorylation by ATP takes place in the absence of Mg2+. This suggests that the role of Mg2+ on dephosphorylation is to convert the phosphoenzyme into a form that, after combination with ATP, reacts rapidly with water. (4) The results are consistent with the idea that combination of ATP at a non-catalytic site is needed for rapid dephosphorylation of the Ca2+-ATPase. 相似文献
17.
18.
19.
The effects of phosphorylation and dephosphorylation of brain myosin on its actin-activated Mg2+-ATPase and contractile activities 总被引:1,自引:0,他引:1
Purified bovine brain myosin contained approximately 1 and 3 mol of protein-bound phosphate/mol myosin in the light chains and heavy chains, respectively. Large portions of this light chain- and heavy chain-bound phosphate (about 0.8 and 2.4 mol, respectively) were removed by incubation with a brain phosphoprotein phosphatase and potato acid phosphatase, respectively. Upon phosphorylation of the dephosphorylated brain myosin with myosin light chain kinase and casein kinase II, about 1.6 and 3.0 mol of phosphate was incorporated into the light chains and heavy chains, respectively, while much lower levels of phosphate were incorporated into the non-dephosphorylated brain myosin under the same conditions. The actin-activated Mg2+-ATPase activity of brain myosin rephosphorylated with myosin light chain kinase was about twice as high as that of dephosphorylated brain myosin (about 30 and 15 nmol phosphate/mg/min, respectively). On the other hand, whereas the rephosphorylated brain myosin superprecipitated rapidly with F-actin, the rate of superprecipitation of the dephosphorylated brain myosin was extremely low. Under appropriate conditions, a loose network of tiny superprecipitates, which formed initially throughout the solution, contracted to form eventually a large and dense particle. These results indicate that phosphorylation of the light chains of brain myosin is a prerequisite for the contraction of brain actomyosin. The role of phosphorylation of the heavy chains by casein kinase II remains to be elucidated. 相似文献
20.
Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions. 相似文献