首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male mice lacking ADAM2 (fertilin beta) or ADAM3 (cyritestin) are infertile; cauda epididymal sperm (mature sperm) from these mutant mice cannot bind to the egg zona pellucida. ADAM3 is barely present in Adam2-null sperm, despite normal levels of this protein in Adam2-null testicular germ cells (TGCs; sperm precursor cells). Here, we have explored the molecular basis for the loss of ADAM3 in Adam2-null TGCs to clarify the biosynthetic and functional linkage of ADAM2 and ADAM3. A small portion of total ADAM3 was found present on the surface of wild-type and Adam2(-/-) TGCs at similar levels. In the Adam2-null TGCs, however, surface-localized ADAM3 exhibited an increased amount of an endoglycosidase H-resistant form that may be related to instability of ADAM3. Moreover, we found a complex between ADAM2 and ADAM3 on the surface of TGCs and sperm. The intracellular chaperone calnexin was a component of the testicular ADAM2-ADAM3 complex. Our findings suggest that the association with ADAM2 is a key element for stability of ADAM3 in epididymal sperm. The presence of the ADAM2-ADAM3 complex in sperm also suggests a potential role of ADAM2 with ADAM3 in sperm binding to the egg zona pellucida.  相似文献   

2.
In mouse, two different isoforms of ADAM1 (fertilin alpha), ADAM1a and ADAM1b, are produced in the testis. ADAM1a is localized within the endoplasmic reticulum of testicular germ cells, whereas epididymal sperm contain only ADAM1b on the plasma membrane. In this study, we show that the loss of ADAM1a results in the male infertility because of the severely impaired ability of sperm to migrate from the uterus into the oviduct through the uterotubal junction. However, epididymal sperm of ADAM1a-deficient mice were capable of fertilizing cumulus-intact, zona pellucida-intact eggs in vitro despite the delayed dispersal of cumulus cells and the reduced adhesion/binding to the zona pellucida. Among testis (sperm)-specific proteins examined, only the level of ADAM3 (cyritestin) was strongly reduced in ADAM1a-deficient mouse sperm. Moreover, the appearance of ADAM3 on the sperm surface was dependent on the formation of a fertilin protein complex between ADAM1a and ADAM2 (fertilin beta) in testicular germ cells, although no direct interaction between the fertilin complex and ADAM3 was found. These results suggest that ADAM1a/ADAM2 fertilin may be implicated in the selective transport of specific sperm proteins including ADAM3 from the endoplasmic reticulum of testicular germ cells onto the cell surface. These proteins then can participate in sperm migration into the oviduct, the dispersal of cumulus cells, and sperm binding to the zona pellucida.  相似文献   

3.
We produced mice lacking the sperm surface protein cyritestin (ADAM 3) and found mutant males are infertile. Similar to fertilin beta (ADAM 2) null sperm (C. Cho et al., 1998, Science 281, 1857-1859), cyritestin null sperm are drastically deficient in adhesion to the egg zona pellucida (0.3% of wild type) and to the egg plasma membrane (9% of wild type). Thus sperm from male mice with a gene deletion of either ADAM have a loss of adhesive function in at least two steps of fertilization. We found deletion of either ADAM gene resulted in the loss of multiple gene products. This loss of multiple gene products (sperm membrane proteins) appears to result from a novel, developmental mechanism during sperm differentiation. Because the altered sperm protein expression must be responsible for the fertilization defects, our data suggest new models for the molecular basis of the affected steps in fertilization.  相似文献   

4.
Male mice deficient for the calmegin (Clgn) or the angiotensin-converting enzyme (Ace) gene show impaired sperm migration into the oviduct and loss of sperm-zona pellucida binding ability in vitro. Since CLGN is a molecular chaperone for membrane transport of target proteins and ACE is a membrane protein, we looked for ACE on the sperm membranes from Clgn-/- mice. ACE was present and showed normal activity, indicating that CLGN is not involved in transporting ACE to the sperm membranes. The ablation of the Adam2 and Adam3 genes generated animals whose sperm did not bind the zona pellucida, which led us to examine the presence of ADAM2 and ADAM3 in Clgn-/- and Ace-/- sperm. ADAM3 was absent from Clgn-/- sperm. In the Ace-/- mice, while ADAM2 was found normally in the sperm, ADAM3 disappeared from the Triton X-114 detergent-enriched phase after phase separation, which suggests that ACE is involved in distributing ADAM3 to a location where it can participate in sperm-zona pellucida binding. This diminished amount of ADAM3 in the Triton X-114 detergent-enriched phase may explain the inability of Clgn-/- and Ace-/- sperm to bind to the zona pellucida.  相似文献   

5.
Fertilin, a heterodimeric protein complex composed of alpha (ADAM1) and beta (ADAM2) subunits on the sperm surface, is believed to mediate adhesion and fusion between the sperm and egg plasma membranes. Here we have shown that mutant male mice lacking ADAM1b are fertile and that the loss of ADAM1b results in no significant defect in sperm functions such as migration from the uterus into oviduct, binding to egg zona pellucida, and fusion with zona pellucida-free eggs. ADAM1b-deficient epididymal sperm showed a severe reduction of ADAM2 on the cell surface, despite the normal presence of ADAM2 in testicular germ cells. The appearance of ADAM1b and ADAM2 on the sperm surface depended on formation and abundance of ADAM1b/ADAM2 fertilin in testicular germ cells. These results suggest that mouse ADAM1b/ADAM2 fertilin may play a crucial role not in the sperm/egg fusion but in the appearance of these two ADAMs on the sperm surface.  相似文献   

6.
Sperm–egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell–cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm–egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (α and β subunits). Fertilin α and β are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin β functions in sperm–egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin α, fertilin β, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin β, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80–90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin β active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin β also strongly inhibited (80–90%) both sperm–egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin β showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin β in sperm–egg plasma membrane adhesion leading to fusion.  相似文献   

7.
Fertilization includes a series of cellular interactions culminating with the fusion of gamete membranes, creating a zygote. Two ADAM proteins present on sperm, fertilin beta and cyritestin, drew much attention. However, gene deletion in mice showed that fusion can happen in their absence. The presence of the integrin alpha6beta1 on egg, a putative fertilin beta receptor, is also dispensable. In contrast, sperm lacking Izumo, a molecule with a single Ig domain, are unable to fuse. On the egg side, a role for GPI-anchored molecules has been shown, and in mice lacking both tetraspanins CD9 and CD81 fertilization is completely blocked.  相似文献   

8.
Eight kinds of gene-disrupted mice (Clgn, Calr3, Pdilt, Tpst2, Ace, Adam1a, Adam2, and Adam3) show impaired sperm transition into the oviducts and defective sperm binding to the zona pellucida. All of these knockout strains are reported to lack or show aberrant expression of a disintegrin and metallopeptidase domain 3 (ADAM3) on the sperm membrane. We performed proteomic analyses of the proteins of these infertile spermatozoa to clarify whether the abnormal function is caused exclusively by a deficiency in ADAM3 expression. Two proteins, named PMIS1 and PMIS2, were missing in spermatozoa from Clgn-disrupted mice. To study their roles, we generated two gene-disrupted mouse lines. Pmis1-knockout mice were fertile, but Pmis2-knockout males were sterile because of a failure of sperm transport into the oviducts. Pmis2-deficient spermatozoa also failed to bind to the zona pellucida. However, they showed normal fertilizing ability when eggs surrounded with cumulus cells were used for in vitro fertilization. Further analysis revealed that these spermatozoa lacked the ADAM3 protein, but the amount of PMIS2 was also severely reduced in Adam3-deficient spermatozoa. These results suggest that PMIS2 might function both as the ultimate factor regulating sperm transport into the oviducts and in modulating sperm-zona binding.  相似文献   

9.
Although fertilin is a heterodimeric complex between ADAM1 (A Disintegrin And Metalloprotease 1, fertilin alpha) and ADAM2 (fertilin beta) located on the sperm surface, two different ADAM1 isoforms, ADAM1a and ADAM1b, are present in the mouse testis. In this study, we have examined the localization of ADAM1a and ADAM1b in testicular germ cells and epididymal sperm. ADAM1a was restrictedly present within the endoplasmic reticulum of germ cells, whereas epididymal sperm contained only ADAM1b on the cell surface. The precursors of ADAM1a and ADAM1b formed a heterodimeric complex with that of ADAM2 in the endoplasmic reticulum of germ cells. The heterodimeric complex between the mature forms of ADAM1b and ADAM2 was also found on the sperm surface. These data imply the potential roles of ADAM1a and ADAM1b in spermatogenesis and fertilization, respectively.  相似文献   

10.
New insights have emerged about the expression, during testicular cord formation, of the ADAM (a disintegrin and metalloprotease) domain family of proteins that combines both cell surface adhesion and proteolytic activity; this family includes integrins alpha3beta1 and alpha6beta1 and tetraspanins, a distinct family of proteins containing four transmembrane domains, a small and a large extracellular loop, and short cytoplasmic tails. ADAM3 (cyritestin), ADAM5, ADAM6, and ADAM15 are expressed in fetal rat testes. In contrast, the expression of the ADAM1/ADAM2 pair (fertilin alpha/fertilin beta, respectively) is not detected in fetal testis. Yet the expression of ADAM1 starts immediately after birth, and is followed within 24 hr by the expression of ADAM2. Therefore, the ADAM1/ADAM2 heterodimer is visualized far in advance of the meiotic and spermiogenic phase of spermatogenesis. A similar expression pattern was observed for integrin subunits alpha3, alpha6, and beta1, as well as for tetraspanins CD9, CD81, and CD98; the latter is a single-pass integrin subunit beta1-binding protein. ADAM2, integrin subunits alpha3, alpha6, and beta1, and tetraspanin CD9 and CD81 immunoreactive sites are observed in prespermatogonia (also known as primordial germ cells or gonocytes). A model is proposed in which the ADAM-integrin-tetraspanin complex, known to constitute a network of membrane microdomains called the tetraspanin web, may be involved in the migration of prespermatogonia from the center to the periphery of the testicular cords and in the reinitiation of mitotic activity during the initial wave of spermatogenesis. A complementary model consists in the rearrangement of the tetraspanin web in prespermatogonia/spermatogonia undergoing spontaneous or Fas-induced apoptosis upon coculturing with Sertoli cells. In this model, the cellular site involved in the formation of preapoptotic bodies is devoid of tetraspanin-integrin clusters, in contrast with nonapoptotic cells, which display a diffuse circumferential distribution. In apoptotic prespermatogonia, immunoreactive clusters are restricted to sites where the attachment of prespermatogonia/spermatogonia to Sertoli cell surfaces is still preserved.  相似文献   

11.
Fertilin is reported to be a heterodimeric protein composed of A Disintegrin And Metalloprotease 1 (ADAM1, fertilin alpha) and ADAM2 (fertilin beta) located on the sperm surface. In the process of clarifying the molecular basis of mouse ADAM1, we have identified two intron-less mouse genes encoding different isoforms of ADAM1, termed ADAM1a and ADAM1b. The amino acid sequences of ADAM1a and ADAM1b deduced from the DNA sequences were homologous to each other (99% identity) in the pro- and metalloprotease domains, whereas the C-terminal half region of ADAM1a, including the disintegrin and Cys-rich domains, shared only a low degree of identity (37%) with that of ADAM1b. These two genes were both localized on mouse chromosome 5 as a single copy gene, and were expressed specifically in the testis. These data demonstrate the presence of the ADAM1a (Adam1a) and ADAM1b (Adam1b) genes in mouse, instead of the ADAM1 gene, and may imply different roles of ADAM1a and ADAM1b in spermatogenesis, sperm maturation, and/or fertilization.  相似文献   

12.
A number of a disintegrin and metalloprotease (ADAM) family members are expressed in mammalian male reproductive organs such as testis and epididymis. These reproductive ADAMs are divided phylogenically into three major groups: ADAMs 1, 4, 6, 20, 21, 24, 25, 26, 29, 30, and 34 (the first group); ADAMs 2, 3, 5, 27, and 32 (the second group); and ADAMs 7 and 28 (the third group). Previous mouse knockout studies indicate that ADAM1, ADAM2, and ADAM3 have intricate expressional relationships, playing critical roles in fertilization. In the present study, we analyzed processing, biochemical characteristics, localization, and expressional relationship of the previously-unexplored, second-group ADAMs (ADAM5, ADAM27, and ADAM32). We found that all of the three ADAMs are made as precursors in the testis and processed during epididymal maturation, and that ADAM5 and ADAM32, but not ADAM27, are located on the sperm surface. Using sperm from Adam2(-/-) and Adam3(-/-) mice, we found that, among the three ADAMs, the level of ADAM5 is modestly and severely reduced in Adam3 and Adam2 knockout sperm, respectively. Further, we analyzed ADAM7, an epididymis-derived sperm surface ADAM from the separate phylogenetic group, in the knockout sperm. We found that the level of ADAM7 is also significantly reduced in both Adam2 and Adam3-null sperm. Taken together, our results suggest a novel expressional relationship of ADAM5 and ADAM7 with ADAM2 and ADAM3, which play critical roles in fertilization.  相似文献   

13.
Fertilin, a heterodimeric protein complex composed of ADAM1 and ADAM2 located on the sperm surface, is involved in sperm–egg interaction. In our study, we examined the physiological processing and subcellular localization of M. fascicularis ADAM2 during spermatogenesis in the testis and epididymal tract. M. fascicularis ADAM2 was initially synthesized as a 100 kDa precursor in testicular germ cells. After passing into 50 kDa intermediate form in the epididymal tracts, the precursor form was finally processed into a 47 kDa protein in sperm. We found that M. fascicularis ADAM2 is localized on the sperm surface and contributes to the formation of a candidate fertilin complex. In particular, Far-Western blot analysis revealed that M. fascicularis ADAM2 cystein-rich domain may be related to protein–protein interaction. Therefore, the cystein-rich domain of ADAM2 could provide a mechanism to form a fertilin complex.  相似文献   

14.
《Reproductive biology》2020,20(4):589-594
The a disintegrin and metalloprotease (ADAM) family proteins comprise a group of membrane-anchored proteins. ADAM32 is expressed specifically in testis and is closely related phylogenetically to ADAM2 and ADAM3, which are known to be critical for fertilization in mice. To assess the biological role of ADAM32, we analyzed Adam32-mutant mice. We found that male mice lacking ADAM32 have normal fertility, testicular integrity, and sperm characteristics. ADAM32 was found to exist at lower levels than ADAM2 and ADAM3 in wild-type testis and sperm, respectively. The present study demonstrates that ADAM32 is dispensable for fertility and appears to be functionally unrelated to ADAM2 and ADAM3 in mice.  相似文献   

15.
One of the most important cell-cell interactions is that of the sperm with the egg. This interaction, which begins with cell adhesion and culminates with membrane fusion, is mediated by multiple molecules on the gametes. One of the best-characterized of these molecules is fertilin beta, a ligand on mammalian sperm and one of the first ADAMs (A Disintegrin and A Metalloprotease domain) to be identified. Fertilin beta (also known as ADAM2) participates in sperm-egg membrane binding, and it has long been hypothesized that this function is achieved through the interaction of the disintegrin domain of fertilin beta with an integrin on the egg surface. There are now approximately 30 members of the ADAM family and, to date, five different ADAMs (fertilin beta, ADAM9, ADAM12, ADAM15, ADAM23) have been described to interact with integrins (specifically alpha(6)beta(1), alpha(v)beta(3), alpha(9)beta(1), alpha(v)beta(5), and/or alpha(5)beta(1)). This field will be discussed with respect to what is known about specific ADAMs and the integrins with which they interact, and what the implications are for sperm-egg interactions and for integrin function. These data will also be discussed in the context of recent knockout studies, which show that eggs lacking the alpha(6) integrin subunit can be fertilized, and eggs lacking the integrin-associated tetraspanin protein CD9 fail to fertilize. Key issues in cell adhesion that pertain to gametes and fertilization will also be highlighted.  相似文献   

16.
Fertilin alpha (also known as ADAM1) is a member of the ADAM (A disintegrin and A metalloprotease domain) family of proteins. In this study, we examine the mechanism of mouse fertilin alpha's in adhesion of sperm to the egg plasma membrane during fertilization. We find that recombinant forms of fertilin alpha corresponding to either the disintegrin-like domain or the cysteine-rich domain and the EGF-like repeat can perturb sperm-egg binding, suggesting that both of these domains can participate in fertilin alpha-mediated adhesion events. In further examination of the fertilin alpha disintegrin-like domain, we find that a subdomain of disintegrin-like domain with the sequence DLEECDCG outside the putative disintegrin loop but with homology to the fertilin beta disintegrin loop can inhibit the binding of both sperm and recombinant fertilin alpha to eggs, suggesting that this is an adhesion-mediating motif of the fertilin alpha disintegrin-like domain. This sequence also inhibits the binding of recombinant fertilin beta to eggs and thus is the first peptide sequence found to block two different sperm ligands. Finally, a monoclonal antibody to the tetraspanin protein CD9, KMC.8, inhibited the binding of recombinant fertilin alpha to eggs in one type of binding assay, suggesting that, under certain conditions, fertilin alpha may interact with a KMC.8-sensitive binding site on the egg plasma membrane.  相似文献   

17.
A new gene family of multidomain membrane proteins (ADAMs) that include isintegrin nd etalloprotease domain comprises an increasing number of identified members. Two members of this family, fertilin α and fertilin β, form a heterodimeric protein that is required for sperm–egg fusion. Most recently, it has been shown that a third family member, meltrin α, is involved in myoblast fusion (Yagami-Hiromasaet al.,1995,Nature377: 652–656). Using restriction fragment length polymorphism analysis of a DNA panel from an interspecific backcross, we have determined the chromosomal locations of four mouse genes of this family that are expressed in testis: fertilin α, fertilin β, ADAM 4, and ADAM 5. These genes have been given the locus symbolsFtna(fertilin α),Ftnb(fertilin β),Adam4(ADAM 4), andAdam5(ADAM 5). They were mapped to chromosomes 5, 14, 9, and 8, respectively, revealing a dispersed localization. Human chromosome locations of these genes are predicted on the basis of the mapping results using the information provided by comparative linkage maps. Because all four of these ADAM genes are expressed in testis and fertilin α and β have been found to be important for fertilization, we compared their chromosomal locations with known mouse mutations affecting spermatogenesis and fertility.  相似文献   

18.
绵羊fertilin β基因编码区的钓取与结构分析   总被引:1,自引:0,他引:1  
娜仁花  旭日干 《遗传》2007,29(8):951-951―956
Fertilin β与精卵的结合和融合有密切关系。为探讨fertilin β蛋白在绵羊受精过程中的作用机理, 采用RACE技术, 首次钓取了该基因的编码区。结果绵羊fertilin β基因的编码区cDNA全长为2,217 bp。同源性分析显示, 绵羊的fertilin β氨基酸序列与牛、猪和人的fertilin β具有79.4%、66.7%和58.1%的同源性。系统发育分析表明, 绵羊fertilin β与牛属于同一分支, 并且也显示了绵羊和牛分类地位最近, 这和传统的分类一致。Fertilin β蛋白结构域分析显示, 绵羊fertilin β去整合素识别序列为TDE, 与牛的序列相同。除了上述三肽序列外, 紧随X-D/E-E的ECD保守序列, 从而形成了X-D/E-ECD五肽保守序列, 在绵羊fertilin β中该五肽序列为TDECE。  相似文献   

19.
Fertilin beta (also known as ADAM2), a mammalian sperm protein that mediates gamete cell adhesion during fertilization, is a member of the ADAM protein family whose members have disintegrin domains with homology to integrin ligands found in snake venoms. Fertilin beta utilizes an ECD sequence within its disintegrin domain to interact with the egg plasma membrane; the Asp is especially critical. Based on what is known about different integrin subfamilies and their ligands, we sought to characterize fertilin beta binding sites on mouse eggs, focusing on integrin subfamilies that recognize short peptide sequences that include an Asp residue: the alpha(5)/alpha(8)/alpha(v)/alpha(IIb) or RGD-binding subfamily (alpha(5)beta(1), alpha(8)beta(1), alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), alpha(V)beta(6), alpha(V)beta(8), and alpha(IIb)beta(3)) and the alpha(4)/alpha(9) subfamily (alpha(4)beta(1), alpha(9)beta(1), and alpha(4)beta(7)). We tested peptide sequences known to perturb interactions mediated by these integrins in two different assays for fertilin beta binding. Peptides with the sequence MLDG, which perturb alpha(4)/alpha(9) integrin-mediated interactions, significantly inhibit fertilin beta binding to eggs, which suggests a role for a member of this integrin subfamily as a fertilin beta receptor. RGD peptides, which perturb alpha(5)/alpha(8)/alpha(v)/alpha(IIb) integrin-mediated interactions, have partial inhibitory activity. The anti-alpha(6) antibody GoH3 has little or no inhibitory activity. An antibody to the integrin-associated tetraspanin protein CD9 inhibits the binding of a multivalent presentation of fertilin beta (immobilized on beads) but not soluble fertilin beta, which we speculate has implications for the role of CD9 in the strengthening of fertilin beta-mediated cell adhesion but not in initial ligand binding.  相似文献   

20.
Genes with a role in fertilization show a common pattern of rapid evolution. The role played by positive selection versus lack of selective constraints has been more difficult to establish. One problem arises from attempts to detect selection in an overall gene sequence analysis. I have analyzed the pattern of molecular evolution of fertilin, a gene coding for a heterodimeric sperm protein belonging to the ADAM (A disintegrin and A metalloprotease) gene family. A nonsynonymous to synonymous rate ratio (d(N)/d(S)) analysis for different protein domains of fertilin alpha and fertilin beta showed d(N)/d(S) < 1, suggesting that purifying selection has shaped fertilin's evolution. However, an analysis of the distribution of single positively selected codon sites using phylogentic analysis by maximum likelihood (PAML) showed sites within adhesion domains (disintegrin and cysteine-rich) of fertilin beta evolving under positive selection. The region 3' to the EGF-like domain of fertilin alpha, where the transmembrane and cytoplasmic tail regions are supposed to be localized, showed higher d(N) and d(S) than any other fertilin alpha region. However, it was not possible to identify positively selected codon sites due to ambiguous alignments of the carboxy-end region (ClustalX vs. DiAlign2). When this region was excluded from the PAML analysis, most single positively selected codon sites were concentrated within adhesion domains (cysteine-rich and EGF-like). The use of an ancestral sequence prior to a recent duplication event of fertilin alpha among non-Hominidae primates (Macaca, Papio, and Saguinus) revealed that the duplication is partially responsible for masking the detection of positively selected sites within the disintegrin domain. Finally, most ADAM genes with a potential role in sperm maturation and/or fertilization showed significantly higher d(N) estimates than other ADAM genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号