首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structures of chymotrypsin- and methylamine-treated negatively stained human alpha 2-macroglobulin have been determined by weighted back projection from electron microscope data. Projections of the reconstructions show good concordance with two-dimensional averages of both stained and frozen-hydrated molecules. The reconstructions reveal that the H-shaped front projection of the molecule is related to the smaller ellipsoidal end view by a rotation of 90 degrees about the crossbar (minor axis) of the H. This finding is in agreement with tilt studies. The reconstruction of the alpha 2-macroglobulin-methylamine reveals an hour-glass shaped void which is filled by the two proteinase molecules in the reconstruction of alpha 2-macroglobulin-chymotrypsin. Protein plugs which appear to block the exterior entrances to the cavity may function to prevent access of proteins to the encapsulated proteinase and serve to block its escape. Extensive thresholding of each reconstruction leaves a "backbone" consisting of two side-by-side rod-like structures, suggesting that this is the arrangement of the two protomeric units which form the molecule. Both structures show some departure from the expected symmetry. The asymmetries are robust features of the reconstructions and may reflect structurally asymmetric features of the transformation from the native to the chymotrypsin-treated form of the molecule.  相似文献   

2.
α2-Macroglobulin (α2M) is a plasma proteinase inhibitor that binds up to 2 mole of proteinase per mole of inhibitor. Proteinase binding or reaction with small primary amines causes a major conformational change in α2M. As a result of this conformational change, a new epitope recognized by monoclonal antibody 7H11D6 is exposed. The association of α2M-proteinase or α2M-methylamine with α2M cellular receptors is prevented by 7H11D6. In this investigation, the binding of 7H11D6 to α2M was studied by electron microscopy. 7H11D6 bound to α2M-methylamine and α2M-trypsin but not to native α2M. The structure of α2M after conformational change resembled the letter “H.” 7H11D6 epitopes were identified near the apices of the four arms in the α2M “H” structure. 7H11D6 that was adducted to colloidal gold (7HAu) retained the specificity of the free antibody (binding to α2M-trypsin but not to native α2M). α2M conformational change intermediates prepared by sequential reaction with a protein crosslinker and trypsin also bound 7HAu. These results suggest that a complete α2M conformational change is not necessary for 7H11D6 epitope exposure and may not be required for receptor recognition. 7HAu was used to isolate a preparation consisting primarily of binary α2M-trypsin (1 mole trypsin per mole α2M instead of 2). Structures resembling the letter “H” were most common; however, each field showed some atypical molecules with arms that were compacted instead of thin and elongated. These incompletely transformed structures were similar to the α2M conformational intermediates described previously (S. L. Gonias and N. L. Figler (1989) J. Biol. Chem. 264, 9565–9570). We propose that lateral arm extension is a critical step in α2M conformational change. Failure of lateral arm extension is probably a common property of different α2M conformational intermediates.  相似文献   

3.
Mucosal addressin cell adhesion molecule (MAdCAM) binds integrin α4β7. Their interaction directs lymphocyte homing to mucosa-associated lymphoid tissues. The interaction between the two immunoglobulin superfamily (IgSF) domains of MAdCAM and integrin α4β7 is unusual in its ability to mediate either rolling adhesion or firm adhesion of lymphocytes on vascular surfaces. We determined four crystal structures of the IgSF domains of MAdCAM to test for unusual structural features that might correlate with this functional diversity. Higher resolution 1.7- and 1.4-Å structures of the IgSF domains of MAdCAM in a previously described crystal lattice revealed two alternative conformations of the integrin-binding loop, which were deformed by large lattice contacts. New crystal forms in the presence of two different Fabs to MAdCAM demonstrate a shift in IgSF domain topology from the I2- to I1-set, with a switch of integrin-binding loop from CC′ to CD. The I1-set fold and CD loop appear biologically relevant. The different conformations seen in crystal structures suggest that the integrin-binding loop of MAdCAM is inherently flexible. This contrasts with rigidity of the corresponding loops in vascular cell adhesion molecule, intercellular adhesion molecule (ICAM)-1, ICAM-2, ICAM-3, and ICAM-5 and may reflect a specialization of MAdCAM to mediate both rolling and firm adhesion by binding to different α4β7 integrin conformations.  相似文献   

4.
The aim of this study was to carry out a histomorphometric analysis of calcified cartilage zone (CCZ) and its interfaces between hyaline cartilage and subchondral bone. The study used 40 donated normal human femoral condyles, from which paraffin-embedded sections were prepared after fixation and decalcification. The histomorphology of the CCZ were qualitatively and quantitatively observed by staining, scanning electron microscopy (SEM) and three-dimensional (3D) reconstruction. The hyaline cartilage and CCZ were stained red with Safranin-O, and the subchondral bone was stained blue with Fast green. CCZ was stained black after von Kossa staining. The hyaline cartilage was interlocked tightly in the manner of “ravine-engomphosis” by the CCZ. The surface roughnesses of tidemark and cement line were 1.14 ± 0.04 and 1.99 ± 0.38. The maximum, minimum and mean thicknesses of CCZ were 277.12 ± 8.6, 9.83 ± 6.72 and 104.162 ± 0.87 μm, respectively. The cell density of CCZ (51.25 ± 21.26 cells/mm2) was significantly lower than that of the hyaline cartilage (152.54 ± 35.77 cells/mm2) (< 0.05). The subchondral bone was anchored tightly in the manner of a “comb-anchor” by the CCZ in our 3D reconstruction model. Thus, we discovered two junctional interfaces of CCZ using different histomorphometric methods. The upper interface of CCZ is a “ravine-engomphosis” shape, while its lower interface is a “comb-anchor” shape.  相似文献   

5.
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)2 lobes joined with D2 symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)4 complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)4 kinase core, because a β4 subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit.  相似文献   

6.
NMR spin-half pair dipolar echo measurements are reported for the lamellar (dispersions and multibilayer stacks) and hexagonal phases of potassium palmitate/2H2O mixtures. In the lamellar Lβ and Lγ (gel) phases the alkyl chains are rigid and perfectly ordered, while in the lamellar Lα and hexagonal phases they are flexible and disordered. In particular, the measurements show that in the fluid lamellar Lα phase the chain is “bent” at the C9–C10 segment; but is “straight” in the hexagonal phase.  相似文献   

7.
The cytoplasm of oocytes of Xenopus laevis is enriched in several soluble proteins which are either absent from the nucleus or are present there at very low concentrations. These molecules, collectively referred to as karyophobic (from the Greek verbs oβιν and oβλoθαi which are meant here in the sense of “to be afraid of” or “to avoid”) proteins represent more than 20% of the total soluble cytoplasmic proteins and include some of the most abundant soluble cellular components. They may be recovered from high-speed supernatant (S-100) fractions and, following sucrose gradient centrifugation, most of them appear in the form of complexes smaller than 8.5S. On denaturation in urea and two-dimensional gel electrophoresis these proteins appear to be comprised of polypeptides of widely different sizes (ca Mr 15 000–230 000) and isoelectric points covering a broad range of pH values (4.2–8.0). Gel filtration and isoelectric focusing of native karyophobic proteins show that the majority occur in acidic complexes smaller than Mr 150 000, including one case of a small karyophobic protein (C9; Mr 30 000). In contrast to karyophilic proteins and proteins equilibrating between nucleus and cytoplasm karyophobic soluble proteins from [35S]methionine-labelled ooplasms, when injected into unlabelled oocytes, remain in the cytoplasm. Human proteins with a similar karyophobic behaviour have been identified in fractions of soluble proteins from HeLa cells; there, the major karyophobic protein (HCa, Mr 36 000) is also one of the most abundant soluble proteins.We conclude that the specific nucleocytoplasmic compartmentalization of soluble proteins is governed not only by the principles of exclusion of large molecules from nuclear uptake and the existence of karyophilic signals in certain proteins but that a series of soluble, globular proteins exist in the cytoplasm, which have other molecular features which selectively exclude them from distribution over the nucleus. The possible functional role of the selective enrichment of these abundant proteins, which so far have escaped attention, in establishing a cytoplasmic milieu is discussed.  相似文献   

8.
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and 1-regularized parallel imaging methods.  相似文献   

9.
One subclass of B12-requiring enzymes is now known to bind their B12 coenzymes “base-off,” with a histidine residue from the protein supplying an imidazole ligand to the cobalt center. Recent results from Sirovatka and Finke (J.M. Sirovatka and R.G. Finke, J.Am. Chem. Soc. 119, (1997) 3057) show that imidazole has an extraordinary trans effect on the mode of carbon–cobalt bond cleavage in coenzyme B12 analogs, compared to pyridine or the natural 5,6-dimethylbenzimidazole ligand, and it was suggested that a differential steric effect could, in part, account for the uniqueness of the imidazole ligand. Such a differential steric effect for imidazole and pyridine is now demonstrated by studies of the thermodynamics of ligation of these ligands to the α and β diastereomers of two alkylcobinamides (RCbi+s, derivatives of cobalamins which lack the normal axial nucleotide) based on the known differences in steric crowding of the α (“lower”) and β (“upper”) axial ligand positions of cobalt corrinoids. Imidazole binds more tightly than pyridine to both diastereomers of NCCH2Cbi+ and CF3Cbi+, in all cases due to a more favorable entropy change, which is the result of lowered steric interference with corrin side chain thermal motions.  相似文献   

10.
The L-type Ca2+ channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α1s or CaV1.1, α2, β1a, δ1, and γ), we created transgenic mice expressing a recombinant β1a subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α2-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of CaV1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α1s subunit to the membrane and its suggested role in excitation-contraction coupling.  相似文献   

11.
Electron microscopy of two homologous giant proteins revealed that complement factor C3 and αi-inhibitor 3 have a common structural motif of a semicircularly bent string 18–20 nm long with two or three bumps indicating globular domains. C3 had a structure similar to the letter C with a small but distinct hole in the center. α1-Inhibitor 3 was a more complete ring sometimes ajar at one corner. When the latter was treated with a proteinase, it became slightly flattened and adopted a squarish C-shape.  相似文献   

12.
Prostaglandin (PG) E2 was the major PG released from the superfused guinea-pig uterus on Day 7, followed by in descending order 6-oxo-PGF, thromboxane (TX) B2 and PGF. However, the outputs of all four substances were low and were very similar. By Day 15, PGF output from the superfused uterus had increased 21.9-fold, whereas the outputs of PGE2, 6-oxo-PGF and TXB2 had increased only 1.8-, 2.9- and 1.2-fold, respectively. A mechanism is apparently “switched on” between Days 7 and 15 which causes a fairly specific increase in the release of PGF from the uterus.Progesterone and/or estradiol had no effect on PG or TX release when superfused over the uterus on Day 7, nor did they have any effect on PG and TX release from the Day 15 uterus when administered separately. When administered together, however, they significantly inhibited PGF, PGE2 and 6-oxo-PGF, but not TXB2, release from the Day 15 uterus. Oxytocin had no effect on PG release from the Day 7 or Day 15 uterus, while A23187 stimulated PGF, 6-oxo-PGF and, to a lesser extent, PGE2 release from the uterus on both Days 7 and 15 Oxytocin is apparently not important for stimulating PGF release from the guinea-pig uterus in relation to luteolysis, whereas increasing intracellular free Ca++ levels may be part of the mechanism for “switching on” uterine PG synthesis. Furthermore, changes in intracellular free Ca++ levels in the endometrium may be responsible for the pulsatile nature of PGF release from the uterus.  相似文献   

13.
14.
The F1c10 subcomplex of the yeast F1F0-ATP synthase includes the membrane rotor part c10-ring linked to a catalytic head, (αβ)3, by a central stalk, γδϵ. The Saccharomyces cerevisiae yF1c10·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F1 and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF1c10 and with the yF1 inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF1(I–III)). An ADP molecule was bound in both βDP and βTP catalytic sites. The αDPDP pair is slightly open and resembles the novel conformation identified in yF1, whereas the αTPTP pair is very closed and resembles more a DP pair. yF1c10·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F1. As for the original yF1 and yF1c10 structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F1 central stalk with the F0 c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu59 carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.  相似文献   

15.
A three-dimensional reconstruction of α2-macro-globulin (α2M) was computed from stain images. The structure appears to have point group symmetry 222 and, as also revealed by a tilt experiment, has the gross shape of a oval that displays a ∼90° twist in the body of the molecule. The reconstruction reveals a novel structure that consists of two Z-shaped components arranged in opposite orientation. These shapes are interconnected by two bridges at the elbow bends of the Z and by two arch-like features that join their ends. The molecule has dimensions of ∼190 × 125 × 120 Å that encloses a 90° twisted ellipsoidal shaped central cavity of 70 × 35 Å. The cavity has four small openings arranged in a staggered configuration that extend to the outside. Serial slices of α2M and α2M-methylamine show that the bodies of the structures appear to be twisted in the opposite orientation. It is proposed that the four thioester bonds in the native molecule are responsible for maintaining its twisted configuration and that their cleavage with methylamine results in the structure becoming twisted in the opposite orientation. A comparison of average images derived from unstained particles of monoclonal Fab-labeled α2M and α2M-methylamine is consistent with this proposal. This unusual change in the handedness of α2M may have an important role in the encapsulation of the proteinase.  相似文献   

16.
Hypertension is one of the most serious health problems of the modern world with a continuous rise in the number of patients. Selective α1-adrenoreceptor antagonists though have many advantages and uses in the management of arterial hypertension, their lack of specificity at the level of α1-adr subtypes leads to multiple side effects. Existence of multiple α1-adr subtypes holds great promise for the discovery and development of more specific and selective drug molecules, targeting only one α1-adr subtype at a time and thus relative freedom from side effects. Herein, the research done on the discovery and evaluation of a variety of chemically diverse structures as selective antagonists of α1-adr and α1-adr subtypes in recent years has been reviewed.  相似文献   

17.
Polysialoganglioside GT1b, a keratinocyte membrane glycosphingolipid, inhibits normal keratinocyte adhesion and migration on a fibronectin matrix. The specificity of the inhibition for cells plated on a fibronectin matrix and competition of GT1b inhibition with peptide RGDS suggest that GT1b abrogates the α5β1/fibronectin interaction. We examined the effects of GT1b on the adhesion and migration of keratinocyte-derived cell lines and correlated GT1b responsiveness and α5β1integrin expression. GT1b (5 nM) significantly inhibited migration of normal human keratinocytes, immortalized keratinocytes, and squamous cell carcinoma SCC12F2 cells on fibronectin, but not on collagen I. Concentrations as high as 5 μM had no effect on SCC13 or HaCaT cells. Likewise, GT1b inhibited fibronectin-dependent cell adhesion of normal human keratinocytes, immortalized keratinocytes, and SCC12F2 cells, but had no effect on SCC13 or HaCaT cells. Flow cytometric and Western immunoblot analysis of integrin expression showed significantly decreased α5and β1integrin expression in SCC13 and HaCaT cells compared to normal keratinocytes, immortalized keratinocytes, and SCC12F2 cells. Incubation with TGF-β1 increased α5β1integrin expression and induced responsiveness to GT1b in HaCaT cells. These data imply that GT1b “response” requires sufficient expression of α5β1and further suggest that the mechanism of the inhibitory effect of GT1b involves GT1b/α5β1interaction.  相似文献   

18.
Sympathetic activation in a “fight or flight reaction” may put the sensory systems for hearing and balance into a state of heightened alert via β1-adrenergic receptors (β1-AR). The aim of the present study was to localize β1-AR in the gerbil inner ear by confocal immunocytochemistry, to characterize β1-AR by Western immunoblots, and to identify β1-AR pharmacologically by measurements of cAMP production. Staining for β1-AR was found in strial marginal cells, inner and outer hair cells, outer sulcus, and spiral ganglia cells of the cochlea, as well as in dark, transitional and supporting cells of the vestibular labyrinth. Receptors were characterized in microdissected inner ear tissue fractions as 55 kDa non-glycosylated species and as 160 kDa high-mannose-glycosylated complexes. Pharmacological studies using isoproterenol, ICI-118551 and CGP-20712A demonstrated β1-AR as the predominant adrenergic receptor in stria vascularis and organ of Corti. In conclusion, β1-AR are present and functional in inner ear epithelial cells that are involved in K+ cycling and auditory transduction, as well as in neuronal cells that are involved in auditory transmission.  相似文献   

19.
The cadherins are a family of homophilic adhesion molecules that play a vital role in the formation of cellular junctions and in tissue morphogenesis. Members of the integrin family are also involved in cell to cell adhesion, but bind heterophilically to immunoglobulin superfamily molecules such as intracellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, or mucosal addressin cell adhesion molecule (MadCAM)–1. Recently, an interaction between epithelial (E-) cadherin and the mucosal lymphocyte integrin, αEβ7, has been proposed. Here, we demonstrate that a human E-cadherin–Fc fusion protein binds directly to soluble recombinant αEβ7, and to αEβ7 solubilized from intraepithelial T lymphocytes. Furthermore, intraepithelial lymphocytes or transfected JY′ cells expressing the αEβ7 integrin adhere strongly to purified E-cadherin–Fc coated on plastic, and the adhesion can be inhibited by antibodies to αEβ7 or E-cadherin.

The binding of αEβ7 integrin to cadherins is selective since cell adhesion to P-cadherin–Fc through αEβ7 requires >100-fold more fusion protein than to E-cadherin–Fc. Although the structure of the αE-chain is unique among integrins, the avidity of αEβ7 for E-cadherin can be regulated by divalent cations or phorbol myristate acetate. Cross-linking of the T cell receptor complex on intraepithelial lymphocytes increases the avidity of αEβ7 for E-cadherin, and may provide a mechanism for the adherence and activation of lymphocytes within the epithelium in the presence of specific foreign antigen. Thus, despite its dissimilarity to known integrin ligands, the specific molecular interaction demonstrated here indicates that E-cadherin is a direct counter receptor for the αEβ7 integrin.

  相似文献   

20.
The crystal structure of 1,6-anhydro-β-d-mannopyranose, C6H10O5, is orthorhombic, P212121, with a = 10.971(2), b = 13.935(3), c = 9.012(1) Å, V = 1377.76 »3 (MoKα, λ = 0.7107 Å), Z = 8, Dx = 1.563 M.gm−3, Dm = 1.565 M.gm−3. the structure was solved by MULTAN and refined to R(F) = 0.043 for 2355 reflections. The two symmetry-independent molecules in the unit cell have similar conformations, except for the orientation of one of the three hydroxyl groups. The conformation of the pyranose rings is 1C4 distorted towards Eo, and that of the anhydro rings is E. There are significant differences between the two molecules in two of the four C---O bond-lengths. These occur where there are important differences in the hydrogen-bonding environment of the oxygen atoms. The molecules are hydrogen-bonded by three linear and three bifurcated O---H···O interactions which form four-membered loops linked into infinite chains. Empirical force-field calculations with MMI-CARB reproduced the geometry of the molecules within the variations observed experimentally between the two molecules, except for a C---O bond in one of the molecules. The effect of excluding the anomeric effect from the theoretical calculations was not significant. Calculations for an intramolecularly hydrogen-bonded molecule were also carried out as a model for the molecules in a non-polar solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号