首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Hallberg 《Protoplasma》1979,101(1-2):111-126
Summary There is a considerable sexual dimorphism as regards the development of the antenna inNeodiprion sertifer. In the male this is manifested in a larger antennal surface area and the possession of a great number of long single-walled sensilla (SW 1), which are located on the antennal branches. In the female the antennal branches are vestigial, and the single-walled sensilla, of a second type (SW 2), are shorter and present in lower numbers. Both sexes have in addition four types of sensilla in common:viz. a third type of single-walled sensilla (SW 3), terminal pore sensilla, double-walled sensilla, and poreless sensilla. These four sensillar types are characterized not only by their external appearance but also by their internal morphology. Especially the cells enveloping the sensory cells vary in number and appearance.Supported by joint grants from the Swedish Council for Planning and Coordination of Research, the Swedish Natural Science Research Council, and the Swedish Council for Forestry and Agricultural Research.  相似文献   

2.
E. Hallberg 《Protoplasma》1982,111(3):206-214
Summary The antennal sensilla inI. typographus are almost exclusively confined to the flattened terminal flagellar segment. The sensillar types have distinct distribution patterns in the three areas where they are found. Judging from the ultrastructural characteristics the following functions can be assigned to the sensillar types: chemoreception, single-walled and double-walled sensilla; chemoreception/mechanoreception, terminal-pore sensillum. Moreover there are two types of mechanoreceptors, one of which is connected to a bristle, whereas the other terminates within the cuticle of the flagellar segment.This study was made within the Swedish project Odour Signals for Control of Pest Insects.  相似文献   

3.
The head of Austroperipatus aequabilis bears five types of sensilla. which were examined by electron microscopy. They differ from each other in position, shape of outer sensory elements and cuticular socket structures. Thus, we distinguish sensilla with sensory hairs, sensilla with sensory bulbs, cone-shaped sensilla. sensilla with sensory bristles, and sensilla of the lips. They are composed of up to 15 cells, which can he separated into four cell types. The most frequent cell type is the bipolar receptor cell that occurs in all sensilla. The apical surface of this primary receptor cell is characterized by one or two partly branched cilia with a basal 9 × 2 + 0 pattern of microtubules. A modified bipolar receptor cell was found in all sensilla bearing a sensory peg except for the sensilla equipped with sensory bristles. The apical dendrite extends to a long pale process which exclusively contains mitochondria and single microtubules. In all sensilla examined in this study at least one supporting cell occurs which is characterized by parallel microvilli. An additional function of this cell type as a part of the stimulus-conducting system is possible. In the sensillum with a sensory bulb two kinds of supporting cells occur. A unique cell type with an upside down position has regularly been found in all sensilla bearing a sensory peg. Apart from the sensilla they also occur within the labial epidermis. Since most sensilla contain several different receptor cells, they can be considered as complex sense organs. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

4.
The fine structure and distribution of various types of antennal sensilla in three nymphal stages and in adults of both solitary-reared (solitary) and crowd-reared (gregarious) phases of the desert locust, Schistocerca gregaria, were investigated by scanning and transmission electron microscopy. Four types of sensilla were identified: sensilla basiconica, s. trichodea, s. coeloconica and s. chaetica. S. basiconica contain up to 50 sensory neurons, each of which displays massive dendritic branching. The sensillar wall is penetrated by a large number of pores. In contrast, s. trichodea contain one to three sensory neurons that branch to give five or six dendrites in the sensillar lumen; the sensillum wall is penetrated by relatively few pores. The s. coeloconica are situated in spherical cuticular pits on the antennal surface. The s. coeloconica are of two types: one type contains one to three sensory neurons with double sensillar walls penetrated by slit-like pores, whereas the second type contains four sensory neurons with non-porous double sensillar walls. The s. chaetica have a flexible socket and a thick non-porous sensillum wall and contain four sensory neurons that send unbranched dendrites to a terminal pore. A fifth sensory neuron of the s. chaetica terminates in a tubular body at the base of the hair. S. basiconica and coeloconica are normally distributed over the entire antennal flagellum, with a concentration in the middle segments; s. trichodea have three areas of concentration on the 5th, 10th and 14th flagellar segments. Sensilla chaetica are most abundant on the terminal segment. Locusts raised in solitary conditions have more olfactory sensilla (s. basiconica and s. coeloconica) than crowd-reared locusts. The difference in sensillar numbers is more evident in adults than in nymphs. These results suggest that differences in the odour-mediated behaviour of nymphs and adults, and between the phases of S. gregaria, may be attributable to differences at the sensory input level.  相似文献   

5.
The ultrastructure and distribution of sensilla on the antennae of the cabbage stem flea beetle, Psylliodes chrysocephala, were investigated using scanning and transmission electron microscopy techniques. Eight different sensillar types were distinguished. These were; hair plate sensilla, sensilla chaetica, three types of sensilla trichodea, sensilla basiconica, grooved peg sensilla and styloconic sensilla. The sensilla chaetica are known to be gustatory receptors. Ultrastructure indicates that the hair plate sensilla and sensilla trichodea type one are probably mechanoreceptors, whilst the sensilla styloconica are probably thermo-hygro receptors. These thermo-hygroreceptors are unusual in that they are innervated by two sensory cells (one hygroreceptor and one thermoreceptor) rather than the more usual triad. The remaining four sensillar types all have a porous hair shaft, indicating an olfactory role. One of these (the grooved peg sensillum) may also have a thermoreceptive function. No sexual dimorphism was found in the structure, number or distribution of the antennal sensilla.  相似文献   

6.
The antennae are a critically important component of the ant’s highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50–60 in a trichoid-I sensillum, and 8–9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.  相似文献   

7.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

8.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

9.
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench (both Poaceae), in sub-Saharan Africa. Like in many other lepidopteran insects, the success of B. fusca in recognizing and colonizing a limited variety of plants is based on the interaction between its sensory systems and the physicochemical characteristics of its immediate environment. The sensilla on the maxillary galeae of B. fusca larvae are typical of Lepidoptera and comprise two uniporous styloconic sensilla, which are contact chemoreceptors, three basiconic sensilla, and two aporous sensilla chaetica. The maxillary palp is two-segmented and has eight small basiconic sensilla at the tip, which were also found to be gustatory. The antennae of B. fusca larvae are short and simple. The sensilla of the antenna are composed of two aporous sensilla chaetica, three multiporous cone-shaped basiconic sensilla, three small basiconic sensilla, and one aporous styloconic sensillum. The basiconic sensillum located on the third antennal segment displayed a contact chemoreception response. The other basiconic sensilla did not show any action potential activity in tip-recording tests. The significant and positive dose–response curve obtained for the antennal basiconic sensillum with sucrose indicated for the first time the presence of gustatory chemoreceptors on the antennae of a lepidopteran larva.  相似文献   

10.
The cuticular sensory receptors that are found on the apex of the labium of hemipterans play an important role in their feeding behavior. In this study we describe the ultrastructure, number, and distribution of sensilla on the labium apex of the chinch bug, Blissus leucopterus leucopterus. Each apical field of sensilla on the labium contains 11 uniporous peg sensilla and one sensillum chaeticum. The uniporous peg sensilla are innervated by 4–5 bipolar neurons that send dendrites in the lumen of each peg. Three neurons are associated with each sensillum chaeticum, two neurons have dendrites in the lumen of the sensillum, and the third dendrite ends in a tubular body at the base of the sensillum. Behavioral tests that involve chemical blockage of the sensory receptors show the importance of the labial sensilla in feeding behavior. Both morphological and behavioral evidence indicate that the labial sensilla have a chemosensitive function.  相似文献   

11.
The pectines of scorpions are ventral bilateral appendages supporting 104–105 chemosensory sensilla called pegs. Each peg contains 10–18 sensory neurons, some of which show ultrastructural evidence of axo-axonic synapses with other sensory neurons in the same sensillum. In extracellular recordings from single-peg sensilla, individual sensory units can be distinguished by impulse waveform and firing frequency. Cross-correlation analysis of impulse activity showed that at least two of these units, types `A1' and `A2', are inhibited during the 100-ms period immediately following activity of a third unit, type `B'. This interaction between sensory units in a single sensillum also occurs in surgically isolated pectines, indicating that it does not involve efferent feedback from the central nervous system. Other sensillar neurons appear to have excitatory interactions. Thus, in scorpion pectine, chemosensory information undergoes some form of processing within individual sensilla prior to its relay to the CNS, making this an unusually accessible preparation for study of first-order chemosensory processing events. Accepted: 12 April 1997  相似文献   

12.
The labial and maxillary palps of the bark beetle, Ips typographus, possess a diversified array of sensilla. There are four types of sensilla possessing a single tubular body indicating a mechanoreceptive function. The variation of the associated cuticular structures of these sensillar types ranges from long bristles to cavities within the cuticle. Terminal pore sensilla with a supposed mechanosensory/gustatory function and single-walled presumably chemoreceptive sensilla are found on the apical part of the terminal palp segments. A poreless sensillar type is found on the lateral side of the terminal segment of the maxillary palp. The functional capabilities of this sensillar type are presently unknown.  相似文献   

13.
吴婧  王佳  董鹏  王进军 《昆虫知识》2007,44(2):244-248
利用扫描电子显微镜观察了黑胸大蠊Periplanetafuliginosa(Serville)成虫下颚须和下唇须上的感器形态。结果发现,在黑胸大蠊下颚须和下庸须末节顶端何感器密集区,尤其是下颚须第5节内侧顶端,有一狭长沟壑,内有大量的带槽锥形感器。通过重点观察感器密集区,发现主要有5~6种类型感器,分别为带槽锥形、毛形、刺形、钟形、齿状、针形感器,其中有些感器又可分为几种亚类型。比较研究发现下颚须和下唇须上感器类型除了带槽锥形感器以外基本相似,只是数量上有区别。  相似文献   

14.
Lepidopteran larvae possess two pairs of styloconic sensilla located on the maxillary galea. These sensilla, namely the lateral and medial styloconic sensilla, are each comprised of a smaller cone, which is inserted into a style. They are thought to play an important role in host-plant selection and are the main organs involved in feeding. Ultrastructural examination of these sensilla of fifth instar Lymantria dispar (L.) larvae reveal that they are each approximately 70 um in length and 30 um in width. Each sensillum consists of a single sensory peg inserted into the socket of a large style. Each peg bears a slightly subapical terminal pore averaging 317 nm in lateral and 179 nm in medial sensilla. Each sensillum houses five bipolar neurons. The proximal dendritic segment of each neuron gives rise to an unbranched distal dendritic segment. Four of these dendrites terminate near the tip of the sensillum below the pore and bear ultrastructural features consistent with contact chemosensilla. The fifth distal dendrite terminates near the base of the peg and bears ultrastructural features consistent with mechanosensilla. Thus, these sensilla each bear a bimodal chemo-mechanosensory function. The distal dendrites lie within the dendritic channel and are enclosed by a dendritic sheath. The intermediate and outer sheath cells enclose a large sensillar sinus, whereas the smaller ciliary sinus is enclosed by the inner cell. The neurons are ensheathed successively by the inner, intermediate, and outer sheath cells.  相似文献   

15.
The mandibles of decapod zoea-I larvae are robustly built masticating mouthparts equipped with several processes and spines. Superficial examination of these sturdy, inflexible structures can suggest that they are lacking sensory receptors. However, detailed TEM analysis of their ultrastructure revealed up to 11 sensillar cell clusters on the gnathal edges of the mandibles of the zoea-I in Palaemon elegans Rathke, 1837. Based on ultrastructural criteria we distinguish 7 types of sensilla: mechanoreceptors, chemoreceptors and mechano- and chemoreceptors. One sensory unit located at the base of the ‘lacinia mobilis’ exhibits the typical features of a crustacean mechanosensitive sensillum with an external seta and corresponding ultrastructure. Another unit shows features indicating bimodal contact chemosensitivity. A third one is similar to known olfactory chemoreceptors.Using the concept of modality-specific structures we analyse the structure and functional morphology of each sensillum, and give a comprehensive overview of the sensory abilities of zoea mandibles. We take a closer look at the ultrastructure of the ‘lacinia mobilis’, providing further features to trace its evolutionary history in Decapoda, and thus contributing to a better understanding of malacostracan phylogeny.  相似文献   

16.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

17.
Detailed information on sensory organs of Diplopoda especially on antennal sensilla are still sparse and fragmentary. The present study on the antennae of Oranmorpha guerinii (Polydesmida, Paradoxosomatidae) utilizing scanning electron microscopy revealed the presence of six sensillar types: (1) apical cones, (2) sensilla trichodea, (3) sensilla microtrichodea, (4) sensilla chaetica, (5) sensilla basiconica bacilliformia, and (6) sensilla basiconica spiniformia. External structure and distribution of cuticular antennal sensilla are compared with data from other diplopod species. We moreover discuss possible functions of antennal sensilla in millipedes.  相似文献   

18.
The external and internal structures of adult Neomysis integer mandibles were studied using light and electron microscopy with special reference to the lacinia mobilis, a highly specialized appendage on the gnathal edge of many crustaceans. The right and left lacinia mobilis are equipped with ciliary primary sensory cells revealing that both laciniae are also mechanosensory organs in addition to their mechanical function during mastication. A detailed character analyses indicated that the right lacinia is probably a highly derived sensory seta, whereas two alternative interpretations are considered for the left lacinia; it could be a sensillar appendage equipped with two mechanosensory units, or it could be a movable appendage of the incisor process containing two sensilla deprived of external appendages. The ecdysis of the lacinia mobilis corresponds very well to type I sensillar ecdysis, suggesting classification as a sensillar appendage. These features support a possible homology of the right lacinia mobilis in Peracarida and Decapoda, tracing them to an origin as a member of the setal row. Whether the left lacinia mobilis is a sensillum or an appendage with sensilla cannot be resolved presently.  相似文献   

19.
The structure of the sensory organs situated on palps and chelicerae of the quill mite Syringophilopsis fringilla (Fritsch, 1958) was examined with the use of scanning and transmitting electron microscopy. The tarsal segment of the palps bears 8 sensilla of three types: two contact chemo-mechanoreceptor sensilla, a single chemoreceptor (olfactory) sensillum, and five tactile mechanoreceptor sensilla. All other sensilla situated on basal palpal segments and on cheliceral stylets are represented exclusively by tactile mechanoreceptors. A proprioceptor sensillum was revealed in the movable digit of chelicerae; the modified cilia of dendrites of 5 sensory neurons of this sensillum run inside the inner non-sclerotized core of the stylet and end at different levels in its apical part, attaching to electron-dense rods connected with a sclerotized sheath of the stylet. The authors assume that the proprioceptor sensillum of the stylet detects the strength of the pressure of the stylet of the movable digit on the quill wall during its piercing, and palpal sensilla determine the optimal place for this process.  相似文献   

20.
One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa. Using a synoptic set of specimens representing 42 families from all of the major infraorders of Diptera, we used scanning electron microscopy to map the gross and fine structures of halteres, including sensillum shape and arrangement. We found that several features of haltere morphology correspond with dipteran phylogeny: Schizophora generally have smaller halteres with stereotyped and highly organized sensilla compared to nematoceran flies. We also found a previously undocumented high variation of haltere sensillum shape in nematoceran dipterans, as well as the absence of a dorsal sensillum field in multiple families. Overall, variation in haltere sensillar morphology across the dipteran phylogeny provides insight into the evolution of a highly specialized proprioceptive organ and a basis for future studies on haltere sensory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号