首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the arrangement and chemical coding of enteric nerve structures in the human large intestine affected by cancer. Tissue samples comprising all layers of the intestinal wall were collected during surgery form both morphologically unchanged and pathologically altered segments of the intestine (n=15), and fixed by immersion in buffered paraformaldehyde solution. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against somatostatin (SOM), substance P (SP) and calcitonin gene-related peptide (CGRP). The microscopic observations revealed distinct morphological differences in the enteric nerve system structure between the region adjacent to the cancer invaded area and the intact part of the intestine. In general, infiltration of the cancer tissue resulted in the gradual (depending on the grade of invasion) first decomposition and reduction to final partial or complete destruction and absence of the neuronal elements. A comparative analysis of immunohistochemically labeled sections (from the unchanged and pathologically altered areas) revealed a statistically significant decrease in the number of CGRP-positive neurons and nerve fibres in both submucous and myenteric plexuses in the transitional zone between morphologically unchanged and cancer-invaded areas. In this zone, a decrease was also observed in the density of SP-positive nerve fibres in all intramural plexuses. Conversely, the investigations demonstrated statistically insignificant differences in number of SP- and SOM-positive neurons and a similar density of SOM-positive nerve fibres in the plexuses of the intact and pathologically changed areas. The differentiation between the potential adaptive changes in ENS or destruction of its elements by cancer invasion should be a subject of further investigations.  相似文献   

2.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

3.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   

4.
In order to clarify further the neural control of digestive tract function, we have compared the neuronal localization of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in rat small intestine. Immunoreactivity for TH was found in numerous varicose axons associated with neurons of the enteric plexuses and in axons within the circular muscular coat and the mucosal villi. Axons with AADC immunoreactivity had a similar distribution, but were sparser in the enteric plexuses and musculature than those containing TH. Chronic extrinsic denervation of a segment of intestine removed all TH-positive nerves from that region. By contrast, the intensity of AADC immunoreactivity was enhanced and more AADC-positive axons were visible than in adjacent intact areas of intestine. The AADC-positive axons appear to represent the intrinsic 'amine-handling' neurons rather than intrinsic tryptaminergic neurons or extrinsic dopaminergic neurons, and the effect on AADC activity of removing the extrinsic nerve supply suggests that this normally exerts some restraining influence on the metabolism of the 'amine-handling' population.  相似文献   

5.
The small and large intestine of adult horses were histochemically and immunohistochemically investigated in order to evidence components of the intramural nervous system. The general structural organization of the intramural nervous system was examined by using Nissl-thionin staining as well as the anti-neurofilament 200 (NF200) immunoreaction, which demonstrated the presence of neurons in the submucous as well as myenteric plexuses. The additional presence of subserosal ganglia was shown in the large intestine. Acetylcholinesterase (AChEase) activity was observed in both the submucous and myenteric plexuses. Localization of acetylcholine-utilizing neurons was also evidenced by immunohistochemical reactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). With both histochemistry and immunohistochemistry possible cholinergic nerve fibres were detected in the inner musculature. The two possible cholinergic co-mediators Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP) have been investigated by an immunohistochemical approach. CGRP immunoreactivity was detected in roundish nerve cell bodies as well as in nerve fibres of the submucous plexus, whereas SP immunoreactivity was evidenced in nerve fibres of the tunica mucosa, in nerve cell bodies and fibres of the submucous plexus and in nerve fibres of the myenteric plexus. NADPH-diaphorase reactivity, which is linked to the synthesis and release of nitric oxide, was detected in nerve cell bodies and nerve fibres of both the submucous and myenteric plexuses as well as in a subserosal localization of the large intestine. The nitrergic components were confirmed by the anti-NOS (nitric oxide synthase) immunoreaction. Results are compared with those of other mammals and related to the complex intestinal horse physiology and pathophysiology.  相似文献   

6.
Summary The morphological and topographical features of the intramural enteric nervous system in the small intestine of the pig has been studied on whole mounts by means of neuron-specific enolase (NSE) and S-100 protein immu-nohistochemistry. A clear visualization of the myenteric plexus allows the recognition of its characteristic morphology, including the thin tertiary plexus coursing within the smooth muscle layers. In the tela submucosa two ganglionated plexuses, each with its own specific characteristics, can clearly be demonstrated: (1) the plexus submucosus externus (Schabadasch) located near the inner surface of the circular muscle layer at the abluminal side of the submucosal vascular arcades, and (2) the plexus submucosus internus (Meissner) close to the outer surface of the lamina muscularis mucosae at the luminal side of the submucosal vascular arcades. Due to the possibility to trace clearly the perivascular plexuses of these vascular arcades by use of immunohistochemical techniques with antibodies to NSE and S-100 protein, the two submucosal nerve plexuses can be demonstrated with exceptional clarity. This is the first report of an investigation of the intramural nerve plexuses of the small intestine of the pig using the NSE and S-100 immunostaining methods, which is sufficiently detailed to substantiate the characteristic topography and structure of the two submucosal plexuses and their relation to the smooth muscle layers and perivascular plexuses. The level of NSE immunoreactivity for enteric neurons displays great variation, a substantial proportion of the type-II neurons appearing strongly stained. Although little is known of the specific function of these enzymes, proposals are discussed.  相似文献   

7.
The pattern of nerve cells and fibers containing calcitonin gene-related peptide immunoreactivity (CGRP-IR) was investigated in the canine digestive tract by means of immunohistochemistry. CGRP-IR nerve fibers innervate all the layers of the gut, including the vasculature, with different densities depending on the region. CGRP-IR processes are sparse in the esophagus and stomach, where they are mostly confined to the enteric plexuses and vasculature. CGRP-IR fibers are quite abundant in the small and large intestine, where they form dense arborizations in the mucosa, and are numerous in the muscularis mucosae, deep muscular plexus and circular muscle. The myenteric and submucous plexuses of the intestine contain dense networks of CGRP-IR fibers and numerous CGRP-IR ganglion cells. On the other hand, in the enteric ganglia of the esophagus and stomach, in the intrapancreatic ganglia and in the ganglionated plexus of the gallbladder, CGRP-IR is restricted to non-varicose processes. A moderate density of CGRP-IR fibers supplies the endocrine and exocrine pancreas, and the fibromuscular layer and lamina propria of the gallbladder. The density of CGRP innervation in different regions can be summarized as follows: intestine > pancreas and gallbladder > or = antrum > cardia > gastric corpus and distal esophagus. CGRP- and tachykinin (TK)-IRs are colocalized in a substantial population of fibers, particularly those distributed to the mucosa, muscularis mucosae and vasculature, whereas there was no evidence of colocalization in intrinsic ganglion cells. The present results suggest that (1) the CGRP innervation of the dog digestive system includes an intrinsic and an extrinsic component, and (2) CGRP- and TK-IRs are co-expressed in extrinsic nerve fibers. These findings extend previous observations in rats and guinea pigs and provide insights into the sites of action of CGRP in the digestive system of the dog, which has served as a model for CGRP functional studies.  相似文献   

8.
The distribution of nitric oxide synthase (NOS), an enzyme involved in the synthesis of the presumed non-adrenergic noncholinergic inhibitory neurotransmitter nitric oxide (NO), was demonstrated in the enteric nervous system of the porcine caecum, colon and rectum. Techniques used were NOS-immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-histochemistry. Throughout the entire large intestine, NOS-immunoreactive (IR) and NADPHd-positive neurons were abundant in the myenteric and outer submucous plexus. In the inner submucous plexus, only a small number of positive neurons were found in the caecum and colon, while a moderate number was observed in the rectum. The nitrergic neurons in the porcine enteric nerve plexuses were of a range of sizes and shapes, with a small proportion showing immunostaining for vasoactive intestinal polypeptide. Varicose and non-varicose NOS-IR and NADPHd-positive nerve fibres were present in the ganglia and connecting strands of all three plexuses. Nerve fibres were also numerous in the circular muscle layer, scarce in the longitudinal muscle coat and negligible in the mucosal region. The abundance of NOS/NADPHd in the intrinsic innervation of the caecum, colon and rectum of the pig implicates NO as an important neuronal messenger in these regions of the gastrointestinal tract.  相似文献   

9.
豚鼠小肠神经节丛的NADPH—黄递酶组织化学观察   总被引:2,自引:0,他引:2  
目前已知,NADPH--黄递酶组化法可选择性地显示--氧化氮合成酶(NOsynthase,NOS)神经元。因此,我们以NADPH-黄递酶组化法,观察了豚鼠小肠肌间神经丛和粘膜下神经丛的神经网格以及NOS神经元。结果表明,三段小肠肌间神经丛的神经网眼大小和形态有明显差异,与对应的粘膜下神经丛相比,差异更显著。在肌间神经丛中,NADPH-黄递酶阳性神经元胞体大小不等;其长突起伸入节间束,而短突起较多,并可见短突起彼此连接.构成节内偶见的局部神经元回路。从小肠上段到下段,NOS神经元数量呈下降趋势。在粘膜下神经丛,我们也观察到少数NOS神经元。  相似文献   

10.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

11.
Summary The formaldehyde-induced fluorescence technique had shown 5-hydroxytryptamine-containing enteric neurons in the intestine of the teleost Platycephalus bassensis, but did not reveal such neurons in the intestine of Tetractenos glaber or Anguilla australis. Re-examination of these animals with 5-hydroxytryptamine immunohistochemistry showed immunoreactive enteric neurons in the intestine of all three teleost species. The 5-hydroxytryptamine-containing enteric neurons showed essentially the same morphology in all species examined: the somata were situated in the myenteric plexus, extending down into the circular muscle layer, but none were found in the submucosa; processes were found in the myenteric plexus, the circular muscle layer and the lamina propria. It was concluded that the neurons may innervate the muscle layers or the mucosal epithelium, but were unlikely to be interneurons. In a range of teleosts, enterochromaffin cells were found in the intestine of only those species in which the formaldehyde technique did not visualize neuronal 5-hydroxytryptamine. Available evidence suggests that, in vertebrates, 5-HT-containing enterochromaffin cells are lacking only where there is an innervation of the gut mucosa by nerve fibres containing high concentrations of 5-HT.  相似文献   

12.
Summary The distribution of 5-hydroxytryptamine in the gut of several species of birds and reptiles, and of a prototherian mammal, the platypus, was studied using a monoclonal antibody. 5-Hydroxytryptamine-like immunoreactivity was found in enterochromaffin cells and, in birds, in thrombocytes. Immunoreactivity was not found in enteric neurons fixed immediately after dissection. A detailed study was made on one avian species, the budgerigar. Following incubation of intestine in physiological solution, immunore-activity was found in nerve fibres in the gut wall that was more marked after incubation with the monoamine oxidase inhibitor pargyline. These fibres took up exogenous 5-hydroxytryptamine. Similar fibres were found in the intestinal nerves and in perivascular plexuses on mesenteric arteries. Both the uptake of 5-hydroxytryptamine and the appearance of neuronal immunoreactivity after incubation were inhibited by the amine uptake inhibitors desmethylimipramine or fluoxetine. Fibres taking up 5-hydroxytryptamine were damaged by pretreatment with 6-hydroxydopamine. It was concluded that the fibres showing immunoreactivity after incubation were adrenergic fibres that had taken up 5-hydroxytryptamine released in vitro from enterochromaffin cells or thrombocytes. These, and more limited observations made on the other species, suggest that birds, reptiles and prototherian mammals lack enteric neurons that use 5-hydroxytryptamine as a transmitter substance.  相似文献   

13.
Katada  Eiichi  Ojika  Kosei  Mitake  Shigehisa  Ueda  Ryuzo 《Brain Cell Biology》2000,29(3):199-207
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   

14.
In the rat small intestine, neurotrophin-3 immunoreactivity was identified in ganglion cells and in processes mostly innervating the mucosa and occasionally the muscle layer and vasculature. The vast majority of neurotrophin-3 immunoreactive neurons contained vasoactive intestinal polypeptide (VIP), but not substance P or related tachykinin (SP/TK). Neurotrophin receptors visualized by pan-trk immunoreactivity were found in numerous ganglion cells of both plexuses and in nerve processes in the intestinal wall. Pan-trk submucosal neurons contained VIP (36%) or SP/TK-IR (47%). Pan-trk myenteric neurons contained VIP-IR (57%) or SP/TK (27%). Our data suggest that neurotrophin-3 and neurotrophin receptors may be involved in the maintenance of enteric neuronal circuits, transmission and phenotypic expression.  相似文献   

15.
Summary In order to clarify further the neural control of digestive tract function, we have compared the neuronal localization of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) in rat small intestine. Immunoreactivity for TH was found in numerous varicose axons associated with neurons of the enteric plexuses and in axons within the circular muscular coat and the mucosal villi. Axons with AADC immunoreactivity had a similar distribution, but were sparser in the enteric plexuses and musculature than those containing TH. Chronic extrinsic denervation of a segment of intestine removed all TH-positive nerves from that region. By contrast, the intensity of AADC immunoreactivity was enhanced and more AADC-positive axons were visible than in adjacent intact areas of intestine. The AADC-positive axons appear to represent the intrinsic amine-handling neurons rather than intrinsic tryptaminergic neurons or extrinsic dopaminergic neurons, and the effect on AADC activity of removing the extrinsic nerve supply suggests that this normally exerts some restraining influence on the metabolism of the amine-handling population.  相似文献   

16.
Using immunocytochemistry, NADPH-diaphorase (NADPHd) histochemistry and electron microscopy, the appearance of nitrergic enteric neurons in different digestive tract regions of the embryonic, neonatal and adult quail was studied in whole mounts and sections. NADPHd was first expressed by embryonic day 4–5 in two distinct locations, namely the mesenchyme of the gizzard primordium and at the caeco-colonic junction. At embryonic day 6, nitrergic neurons had already begun to form a myenteric nerve network in the wall of the proventriculus, gizzard and proximal part of the large intestine and by embryonic day 9, a myenteric network was visualized along the entire digestive tract of the quail. At the level of the stomach, this network was confined to the area covered by the intermediate muscles. By embryonic day 12–13, the NADPHd-positive myenteric neurons in the wall of the distal parts of the blind-ending paired caeca also became organized into ganglia. From this developmental stage on, a submucous nitrergic nerve network, sandwiched between the lamina muscularis mucosae and the luminal side of the outer muscle layer, became prominent in the proventriculus and intestinal walls. In the adult quail, only a minority of the NADPHd-positive neurons stained for vasoactive intestinal polypeptide (VIP) along the intestine. VIP-immunoreactive (IR) cell bodies were frequent in the myenteric plexus but not in the submucous plexus, whereas there were considerable numbers of NADPHd-positive neurons in both these plexuses. Nitrergic fibres were also observed in the outer muscle layer, but were almost absent from the lamina muscularis mucosa and lamina propria, in contrast to the dense VIP-ergic innervation encircling the bases of the intestinal crypts.  相似文献   

17.
Calcitonin gene-related peptide is found extensively in the innervation of the intestine and has potent pharmacological effects on secretion, blood flow, and motility. Although essential for assessing the physiological significance of CGRP, detailed information concerning the distribution of its receptor(s) within the intestine is lacking. By using autoradiographic methods, we identified specific binding sites for 125I-tyr0-CGRP-alpha in all regions of the rat small and large intestine. Particularly dense saturatable binding is observed within the lamina propria. There is moderate saturatible binding in the myenteric plexuses. These findings clearly support the notion that CGRP has a neuroeffector role in intestinal functions.  相似文献   

18.
Summary Neuromedin U immunoreactivity was located histochemically in the guinea-pig small intestine. Projections of immunoreactive neurons were determined by analysing patterns of degeneration following nerve lesions. The co-localization of neuromedin U immunoreactivity with immunoreactivity for substance P, neuropeptide Y, vasoactive intestinal peptide and calbindin was also investigated. Neuromedin U immunoreactivity was found in nerve cells in the myenteric and submucous plexuses and in nerve fibres in these ganglionated plexuses, around submucous arterioles and in the mucosa. Reactive fibres did not supply the muscle layers. Most reactive nerve cells in the myenteric ganglia had Dogiel type-II morphology and in many there was co-localization of calbindin, although some Dogiel type-II neuromedin U neurons were calbindin negative. Lesion studies suggest that these myenteric neurons project circumferentially to local myenteric ganglia. Projections from myenteric neurons also run anally in the myenteric plexus, while other projections extend to submucous ganglia, and still further projections run from the intestine to provide terminals in the coeliac ganglia. In the submucous ganglia neuromedin U was co-localized in three populations of nerve cells: (i) those with vasoactive intestinal peptide immunoreactivity, (ii) neurons containing neuropeptide Y, and (iii) neurons containing substance P. Each of these populations sends nerve fibres to the mucosa. Neuromedin U immunoreactivity is thus located in a variety of neurons serving different functions in the intestine and therefore probably does not have a single role in intestinal physiology.  相似文献   

19.
Calcitonin gene-related peptide (CGRP)-containing perikarya and axonal processes were localized by preembedding electron-microscopic immunocytochemistry in the porcine small intestine. Immunoreactive well-defined type II neurons were localized in the plexus myentericus, and plexus submucosus externus and internus. In some cases, they were found in direct contact to the basal lamina surrounding the ganlion, thus being in close apposition to the interstitial space. The perikarya are generally larger than the immunogative nerve cell bodies and have a typical smooth outline. The electron-microscopic features of the labeled nerve processes investigated provide evidence for their axonal nature. These ultrastructural observations confirm previous light-microscopic results which showed that CGRP-containing nerve cells in the porcine small intestine belong to the neuronal population of the type II cells, the processes of which display the ultrastructural features of axons. A large number of reactive varicosities show synaptic specializations on immunonegative nerve cell bodies, suggesting that at least part of the type II neurons have post-synaptic effects on CGRP-negative neurons.  相似文献   

20.
The neuronal form of the enzyme nitric oxide synthase, which is an obligatory constituent of neurons that utilise nitric oxide as a transmitter, was revealed histochemically in this study by its ability to transfer a proton from reduced nicotinamide adenine dinucleotide phosphate to nitro-blue tetrazolium. In the guinea-pig colon, nitric oxide synthase was located in numerous irregularly-shaped myenteric neurons with single axons. In the submucosa, a small number of neurons had strong enzyme activity, whereas many were weakly stained. Nerve fibres were found in the longitudinal muscle, circular muscle, muscularis mucosae and ganglia of the two plexuses. No nerve fibres were found in the lamina propria of the mucosa. The same distribution of nerve cells and fibres was revealed using immunohistochemistry for nitric oxide synthase. Lesion studies showed that the axons of myenteric neurons all projected anally. Myenteric cells were the source of nerve fibres in the circular muscle and in more anally located myenteric ganglia. The sparse innervation of submucous ganglia was intrinsic to the submucous plexus. It is suggested that nitric oxide synthase is one of the transmitters of inhibitory neurons to the muscle and is also utilized by descending interneurons of the myenteric plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号